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Abstract 

An indexing method for single-crystal diffractometry 
is described which is applicable to especially difficult 
cases such as twin lattices, incommensurate struc- 
tures, fragmented crystals, long axes and unreliable 
data. Finding the reciprocal lattice from a cloud of 
reciprocal-lattice points (reflections) is reduced to 
finding elementary periods in one-dimensional rows, 
obtained by projecting all observed points onto the 
normal to the plane formed by any three of these 
points. Row periodicity and offending reflections are 
easily recognized. Each row, by its direction and 
(reciprocal) spacing, defines one direct axis vector, 
based upon all cooperating observations. From the 
direct vectors so obtained a primitive direct cell is 
chosen and refined against the fitting reflections. The 
result is one main lattice, or a main lattice and a set 
of alien reflections. The method operates semi- 
automatically in the program D I R A X  and has been 
tested, without failure, on hundreds of CAD4 
reflection files, among which there were many 
auto-indexing-resistant lists. 

Introduction 

It is common practice in three-dimensional indexing 
to choose a suitable initial reciprocal cell (three 
shortest independent vectors) from the observed 
reflection vectors and their differences. Reciprocal- 
space methods such as the CAD4, ' INDEX'  (CAD4 
Manual 1989) start with indexing the reflection list 
with the initial cell. Because the initial reciprocal axes 
are (unknown) integer linear combinations of the true 
reciprocal axes, the ratio of the volumes of the initial 
and true reciprocal cell is an integer. Therefore, 
reflection indices calculated with the inverse orienta- 
tion matrix from the initial cell are exact fractions, 
with denominators equal to (a divisor of) the integer 
volume ratio. This ratio can be derived from the 
fractional indices, and a linear transformation matrix 
with determinant equal to the ratio is set up, such that 
all indices are converted to integers and thereby the 
initial orientation matrix to the final one. Each 
reflection is treated individually and their coherence 
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as being elements of a translation group is used 
implicitly only once when looking for the common 
denominator in the initial indices. 

Clegg (1984) describes an enhancement of the 
direct-space method, based upon studies by Jacobson 
(1976) and Sparks (1976, 1982). An initial cell is used 
to produce systematically direct-lattice vectors. In 
order to verify a generated vector as a true direct 
vector the condition is applied that scalar multi- 
plication of a true direct vector and any true 
reciprocal vector results in an integer. If a great 
majority of the products of a tentative direct vector 
and each of the available true reciprocal vectors (i.e. 
the observed reflection vectors) are integers, the direct 
vector is accepted as a true one. From the set of 
accepted direct vectors a final cell can be obtained. In 
this method the cohesion between the reflections is 
repeatedly exploited since all reciprocal vectors are 
used to confirm one direct vector. 

Reciprocal- and direct-space methods are both 
initial-cell methods. The initial cell, however, is not 
based on all information but only on a subset, viz of 
three (difference) vectors. Choosing a wrong initial cell 
is fatal and this may easily happen with alien 
(non-fitting) reflections in the list. If from 25 reflections 
9 are aliens (Example 1) the chance of choosing a false 
initial cell is 74%. Even with a single lattice the 
process may be obstructed when inaccurate or 
ill-distributed data are provided (see Example 2). Then 
the initial cell may be unfit to calculate reliable 
fractional indices or to generate reliable direct vectors. 
With incommensurate structures (with satellite reflec- 
tions at regular distances close to the main lattice 
points) usual indexing procedures may find only a 
superlattice (see Example 3). 

Sometimes indexing problems can be solved by 
manipulating the data. Rearrangement of the 
reflection list, averaging of (multiples of) difference 
vectors, exclusion or replacement of seemingly 
unfavourable reflections, adapting parameters or 
tolerances and manual selection of trial vectors are 
common examples, apart from still more ingenious, 
mostly undocumented, activities. If unreliable setting 
angles originate from heavily structured profiles from 
fragmented crystals an experimental method (Duisen- 
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Example 1. Automatic solution for a tw& lattice from 
16 regulars and 9 aliens 

LevelFit is set more critical than usual to increase the 
discrimination between main lattice reflections and aliens. Note  that 
all I indices are integer. 
2:0 .70930 A; IndexFit: 0.10, LevelFit: 1/48; Dmax: 80; t vectors: 
157; ACL: 11. 

nF statistics 
(101 unique t-veclors with exactly 5 fitting reflections, etc.) 

7 9 1 5 1 0 1 1 8  .i] l1 ! ]  14 1 1 7  [ ~(~ i 23 "1 6 3 2 1  12 15 i 18 24 
10 13 16 - 19 22 25 i 

nr theta 

1 16.20 -106.45 34.88 
2 17.91 -51.98 30.50 

"3 17.97 -106.30 31.12 
"4 1 2 . 4 1  -132.04 22.53 

5 12.49 -93.65 23.45 
"6 12.44 -118.74 22.95 

7 12.85 -106.23 22.99 
8 12.91 -81.41 22.88 

• 9 12.64 28.00 35.60 
10 15.93 0.77 49.0,6 
II  11.33 5.32 20.16 
12 10.93 -2.92 21.26 

"13 10.90 -4.00 21.73 
14 11.29 57.53 41.71 

'15 10.68 74.74 42.17 
16 11.21 -26.17 48.06 
17 15.98 87.85 45.29 
18 16.27 74.56 25.50 

• 19 12.61 121.21 34.83 
2111 t0.98 88.111 16.74 
21 11.33 -177.85 21.13 

'22 0.70 129.14 50.90 
23 8.43 128.97 68.16 
24 13.14 145.40 65.47 

"25 14.0~ -160.31 63.21 

phlb ehib h k I dth dom dch 

-8.017 2.012 -0.001 
-6.995 1.995 4.998 
-9.187 1.970 0.()07 
-5.570 11.'4911 - 1.996 
-6.93g (1.995 0.9'4'4 
-6.359 0.986 -0.993 
-7.020 1.004 -0.()0 I 
-7.003 1.004 1.999 
2.900 1.925 3.1104 

-0.001 2.997 4.0110 
0.909 I .(IX) 3.995 
0.008 0.984 4.001 

-0.109 0.998 3.994 
4.001 2.006 1.004 
4.211 1.928 (1.04)5 

-2.001 2.003 3.0(10 
5.981 3.1111 -1.(101 
8.052 2.(106 -0.1)08 
4.540 1.945 -2.994 
5.995 ().(X~)3 - I.I102 

-0.053 0.984 -4 (104 
2.234 1.969 - 1.()89 
(I.946 1.984 4).987 
1.0()0 3.000 -2.111)0 

-2.145 3.036 - 1.989 

0.052 -0.011 0.092 
-(1.018 0.007 -0.040 

-0.107 0.095 0.068 

0.039 -0.006 0.021 
0.009 -0.022 0.063 

-0.009 -0.008 -0.020 
-0.063 -0.725 0.190 
-0.018 0.039 -0.322 

0.024 -0.041 0.063 

0.1110 41.005 0.042 
11.012 0.037 0.188 
11.1189 0 . 0 ~  -0.085 

-0.019 0.033 -11.126 
-11.(139 -0.3711 -11.306 

-0.1185 11.381 0.355 
-0.000 0.005 -0.002 

reciprocal axes matrix R direct axes matrix D 

0.(123237 11.1101830 11.123872 -0.41116 11.0318 5.0498 

-0.(XX1756 O. 196139(1 1.04X1074 2.2439 7.8825 O. 1124 

cell dimensions 

a b c: 12.0137 5.0666 8.1964 ",flume I 
(J ' , y :  90.142 1111.067 90.099 ] 489.63 1 

berg, 1983) can be useful to enhance the profile quality 
and thereby the accuracy of the data. 

The method presented here does not need an initial 
cell nor does it require data manipulation. It accepts 
the reflection list as such, constructs direct-lattice 
vectors directly from the data, in the same process 
recognizing and avoiding contributions from alien or 
unreliable reflections, and produces a final primitive 
cell. It could be called a final-cell method. 

Method 

The distinction between alien reflections from other 
lattices or fragments and non-fitting reflections from 
inaccurate data is irrelevant in what follows, so we 
will use 'alien' for all sorts of reflections not belonging 
to a regular main lattice. Not ions  such as 'equal', 
'integer' and 'fitting' are to be understood in the 
experimental, not the mathematical  sense. 

(a) Generation of one-dimensional lattices 
'Triplets' are essential - a triplet is a triangle the 

corners of which are formed by the end points of three 

Example 2. Automatic solution for a small protein 
known to be tetragonal 

The data are ill-distributed (narrow phib region) and suffer from 
serious systematic errors. Therefore the criteria IndexFit and 
LevelFit are set wider than usual. (With IndexFit 0.2 all reflections 
fit, but to a still more inferior cell.) 
2:1.54056 t%,; IndexFit: 0.15; LevelFit: 1/12; Dmax: 160; t vectors: 
1691; ACL: 22. 

nF statistics 
(378 unique t-vectors with exactly 5 fitting reflections, etc.) 

8 362 11 15 19 
270 12 16 211 - 24 

nr theta 

*1 4.43 
2 10.99 
3 16.44 

"4 5.20 
"5 10.91 
6 14.87 
7 18.19 
8 17.16 
9 19.03 
10 18.92 
11 16.07 
12 19.117 

*13 10.25 
14 10.59 
15 4.60 
16 6.31 
17 6.46 
18 15.46 
19 10.94 
20 9.35 
21 13.55 
22 18.46 
23 18.56 
24 19.66 
25 9.49 
26 12.49 

phib chib h k I dth dom dch 

6.86 -46.71 
11.92 - 16.45 
17.32 -13.36 
6.50 -29.61 

12.29 21.73 
1552 -5.08 
19.35 -13.41 
17.95 8.17 
22.39 28.70 
19.50 -1.61 
16.85 -6.32 
22.41 -28.34 
12.59 32.19 
11.20 -5.79 
6.64 39.71 
8.93 40.21 
8.04 28.91 

16.56 12.55 
21.12 57.22 
10.41 14.90 
14.38 7.21 
21.114 -23.74 
20.18 15.88 
21.05 13.55 
10.64 -13.40 
16.03 34.61 

-0.018 6.849 3.884 
3.005 10.881 14.924 
4.008 13.961 23.989 
0.990 6.833 5.8811 
5.994 -0 .1711 14.843 
4.992 9.995 21.973 
4.013 14.966 26.998 
7.11011 5OI3 25.'4~6 
g.99o -6.1176 2r,.q 15 
6.(X)8 111.112 I 2qi.lNh 
4.986 I I.(il 7 233173 
0.987 21.0 Ih 253)82 
6.002 -3.1'45 12.881 
3.998 7.8'43 14.'40~ 
2.994 -2.147 4.'414 
3.998 -3.15(1 tl.'411 
3.995 -I.134 7.(,1111 
6.999 2.944 22.'4113 
5.981 - 11.1150 9.9251 
4.994 1.852 12.868' 
5.996 4.929 I '4.896 
2.004 1 8 . ' 4 8 3  25.975 
8.005 1.1102 27.9'411 
7.997 2.1189 30.086 
2.995 8.888 12.9115 
6.('92 -5.142 15.gh8 

-(l.OOtl -0.(}111 11.214 
-1).(113 -0.110 1 .I 71 

-0.018 -(H)01 -(1.1i17 
-11.001~ -(i.(112 (I .07h 
-(I.IWII - I H I I 5  -1),ll2(I 
-(I.I135 ()+iWl~l II+ Ih7 
(IJ)57 li.ll41i .111RI.'~ 

- I ) l l lh  -II,I)IRI -(I,II~lX 
-l) .( l l3 t).(WIN -t) (liill 

-11.068 -(1.1)2f) 0.225 
-11.(113 0.041 1.181 
-11.1112 0.1143 11.885 
-11.032 11.4W10 11.756 
-I).052 -0.052 (). 133 
-I).020 0.057 11.266 
-0.072 -0.041 0.523 
-11.061 -0.1151 11.1~5 
-1).017 -11.017 11.1112 
-11.1102 -11.1123 0.1)07 
li.046 [).IWWI -11.16 

-li.{177 -II.li21i li. I~ 
-1i.ll,42 11.1X18 11.407 

reciprocal axes matrix R direct axes mamx I) 

0.0165031 0.005236 0.0(0421 23.79h5 31.h969 

0.0133341 -0.010972 0.0130019 -58.4873 52.7221 

cell dimensions 

a b c: 38.11749 77.7299 78.7879 ,,(lltilnc [ 
(J ~,7: 89.1151~ 91).(~2 9)'tl ()i 27,3115.7 I 

Iq.X4'4(I I 

-hh.,~liiK3 

2.673.3 

observed reflection vectors. (The origin 'reflection' is 
considered too.) As follows directly from the definition 
of the reciprocal lattice, the normal to a triplet defines 
the direction of a direct-lattice vector if the three 
reflections belong to the same reciprocal lattice. If we 
image such a direct vector in the vertical position, all 
reciprocal-lattice points will be seen in equidistant 
horizontal layers (similar to an axial rotation 
photograph on a cylindrical film, ignoring the increase 
of the interlayer distance with the level number). 
Therefore the projection of the regular observed 
reflection-vector end-points on the 'rotation axis' will 
result in a one-dimensional  lattice. Alien reflections 
generally will end somewhere between these lattice 
points, or, by accident, close to a lattice point, so they 
are either recognized or harmless. A projection on 
the normal to a mixed triplet of regular and alien 
reflections will generally exhibit no period or an 
extremely small period, because this normal does not 
constitute a genuine direct-lattice-vector direction. 



94 I N D E X I N G  IN SINGLE-CRYSTAL DIFFRACTOMETRY 

Example 3. Primitive cell for an incommensurate 
structure after the second cycle, usin9 only fittin9 

reflections from the first cycle with a lower A CL 

IndexFit and especially LeveiFit are set narrower to detect satellite 
reflections. Normal indexing procedures (and DIRAX with a high 
ACL) find a supercell fitting all reflections, with basic vectors ( -  1, 
- 1, 0), (0, 1, - 4 ) ,  (6, - 6 ,  - 1) and volume 3942.00 = 49 x 80.44. 
2: 0.70930A; IndexFit: 0.08; LevelFit: 1/48; Dmax: 80; t vectors: 
132; ACL: 13. 

nF statistics 
(15 unique t-vectors with exactly 5 fitting reflections, etc.) 

[ 57 ll~l 98 I0 l i  13 1211 i t  1514 40 16 ] 

mr 

• I 8.43 -28.25 1.51 
2 6.74 25.22 -6.62 
3 6.0-4 -62.10 20.97 
4 9.71 17.06 11.03 
5 8.04 - 1.26 40.94 
6 9.86 42.32 33.39 
7 6.94 61.55 23.60 
8 12.11 -1.26 40.94 

"9 8.44 -71.85 58.57 
• 10 13.20 58.14 50.52 

11 12.65 69.78 45.5 I 
12 12.13 -I.21 40.94 
13 13.41 -32.75 35.60 
14 13.30 -13.61 19.17 

• 15 13.40 -2.93 20.55 
16 13.30 12.fi7 19.84 

"17 11.42 -9.24 16.31 
18 9.72 -45.14 63.57 

* 19 I 1.62 -43.93 58. I I 
20 13.99 -62.09 20.% 

"21 13.20 34.82 13.92 
• 22 I 1.63 -21.20 14.28 
23 9.72 17.07 I 1.03 
24 9.71 -17.53 10.14 

"25 7.94 -12.30 4.03 

theea phlb chib h k I dth dom dch 

1.203 -0 .21)3 1.447 
0.000 0.999 1.000 
1.000 - 1.000 11.999 

-0.000 0.999 1.999 
0.0oo .0.000 1.999 

-I.000 1.000 2.000 
-0.999 0.999 0.999 
0.000 -0.000 2.998] 
0.205 - 1.205 1.447 

- 1.7% 0.795 2.447 
-2.000 1.001 2.000 
-0.001 0.001 3.003 

1.000 -1.000 3.001 
1.000 0.000 3.000 
0.593 0.408 3.104 

-0.0OO 1.000 2.999 
0.7% 0.204 2.553 
0.000 -I.001 2.000 
0.204 - 1.204 2.446 
2.001 -2.000 1.998 

-0.797 1.7% 2.449 
1.205 -0.204 2.449 

-0.000 l.O01 2.001 
1.000 -0.000 2.000 
0.7% 0.204 1.552 

-0.003 -0.026 0.025 
-0.003 -0.023 -0.017 
-0.004 -0.002 0.006 
-0.005 -0.011 0.000 
0.000 -0.013 -0.007 

-0.006 0.018 0.007 
-0.007 -0.011 0.000 

0.001 0.001 -0.012 
0.013 0.027 0.000 
0.002 0.009 -0.004 
0.000 0.001 -0.005 

-0.003 0.007 -0.005 

0.003 -0.031 -0.000 

-0.001 -0.014 -0.027 

0.006 0.008 0.006 
-0.001 -0.010 -0.005 

reciprocal axes matrix R direct axes matrix D 

O. 148448 0.148413 O. 1490135 -3.6387 1.4438 - 1.5729 

-0. 747931 -0.167593 1). 29283 0.0855 3.8300 3.3185 

cell dimensions 

a b c :  4.2198 4.2188 volume]  
a f~ v : 90.002 89.957 116.946 80.44 

Therefore interference from aliens is detected in this 
case as well. 

(b) Calculation of  direct vectors 
Each line projection is searched for the one- 

dimensional lattice with the shortest period (above a 
given minimum) that represents the maximum 
number of projected reflections. In an iterating 
refinement with all cooperating reflections (i.e. 
projecting to a lattice point) the elementary reciprocal 
distance vector d* is established. This defines a 
potential direct-lattice vector t, with direction along 
d* and length 1/[d*[. (Note that d* is a vector 
in reciprocal space but not a reciprocal-lattice vector.) 
The vector t is stored, together with the number of 
cooperating fitting reflections, n v. It is called a 
potential direct vector, because finding a particular 
vector is not sufficient proof for it being a true direct 
vector from the lattice we are looking for. The triplet 
may consist of three aliens (or two and the origin) and 
then an alien vector may be found, or one or more 

Example 4. One axis much longer than the others and 
rather inaccurate data 

IndexFit and LevelFit are set wider than normal. Note that from 
the 1610 t vectors only 8 are supported by all (25) reflections. 
2:1.54056 A; IndexFit: 0.20; LevelFit: 1/12; Dmax: 120; t vectors: 
1610; ACL: 23. 

nF statistics 
(288 unique t-vectors with exactly 5 fitting reflections, etc.) 

50 14 28 17 1/9 20 7 23 
1 12 24 58 15 II 18 21 / 

. 7 291 10 13 29 16 19 16 22 25 ' 

nr theta phib ehib 

1 11.21 55.14 0.05 
2 12.36 58.43 -0.68 
3 11.65 56.25 -0.23 
4 11.95 57.42 -0.49 
5 12.22 33.73 4.04 
6 14.17 53.26 0.34 
7 13.27 78.13 -4.36 
8 14.18 79.65 -4.43 
9 9.91 86.60 -5.80 

10 12.00 -50.12 29.92 
11 11.70 -48.35 30.49 
12 11.73 -29.23 30.69 
13 11.56 -26.90 30.81 
14 11.88 105.80 34.13 
15 12.40 93.81 33.73 
16 13.26 102.86 29.31 
17 13.11 93.22 31.22 
18 14.18 -69.42 25.49 
19 12.38 -64.20 -30.91 
20 12.30 -51.31 -30.14 
21 12.28 -35.24 -29.70 
22 12.57 -52.90 -29.16 
23 11.94 -30.83 -31.13 
24 12.69 -6.66 -29.54 
25 13.12 -42.65 -26.76 

h k I 

0.003 3.021 21.055 
-0.002 3.008 23.093 
-0.000 3.037 22.138 
-0.002 3.004 22.978 
0.003 5.003 15.992 

-0.000 4.003 25.950 
-0.004 l.OI 1 28.071 
0.008 0.892 31.030 

-0.003 0.008 21.966 
1.001 3.988 - 17.981 
1.000 3.992 - 16.989 
1.001 4.994 - 111.996 
0.995 5.007 - 111.1)24 
2.001 -0.997 18.975 
1.999 0.001 20.9tM) 
1.999 -0.995 22.963 
1.997 0.002 22.981) 
1.002 2.985 -27.000 

-2.002 1.997 - 18.999 
-2.002 3.000 -16.010 
-2.001 3.995 -11.047 
-2.000 2.998 -17.013 
-2.001 4.003 -9.010 
-1.998 5.006 -0.013 
-2.000 3.994 -14.995 

dth dom dch 

0.043 -0.095 11.081 
0.004 -0.076 -0.1123 
0.092 -11.149 11.024 
-0.004 -0.067 -0.028 
0.003 -0.021 I).057 

-0.016 -0.072 0.007 
-0.010 -0.1 t2 -0.051 
-0.014 0.868 -I).027 
-0.015 -0.102 -0.065 
-0.021 -0.058 11.047 
-1).1115 -0.031~ 11.1122 
-0.(X)8 -0.1115 I).1)44 
().(IO t) -1).023 -0. 119 

-O.IX~ -11.1X)3 11.1155 
-O.IX~ -O.(X)6 O.(X)3 
-1).016 41.021 0.()43 
-0.014 -0.023 -11.008 
-0.010 -0. I I 1 O.(H I 
0.0f,4 -0.018 -0.045 
0.007 -0.013 -0.014 
0.005 -0.107 -11.1103 
0.001 -0.028 0.013 
O.OOq -0.005 0.005 
0.003 -0.019 0.065 
-11.009 -0.025 -0.022 

reciprocal axes matrix R direct axes matrix D 

-I).013834 0.043713 0.01)0582 '0.9207 22.2555 3.5954 

0.088099 0.007069 -0.001016 -97.6575 5.7759 -9.7718 

cell dimensions 

a b c: 11.1486 22.5628 98.3150 volume 
a ~ ¥ : 89.910 89.983 90.000 24730.51 

aliens may by accident have been projected to an exact 
fraction of the true period and then the length of t is 
a multiple of the correct length or, finally, a mixed 
triplet may have resulted in a completely nonsensical 
vector. 

The triplets are processed in a random sequence, 
interrupted at regular intervals for final cell calcula- 
tions (described later). The randomness ensures equal 
opportunity for all reflections at the outset. This is 
especially effective if far more than 25 reflections have 
been measured (e.g. from an area detector), in which 
case a regular sequence might cause a set of 
fundamental triplets to be treated at the very end. 
With a random sequence the lattice may be obtained 
long before all triplets have been examined. 

Those reflections which seem alien in one projection 
may well be regular in another. This situation is not 
uncommon with incommensurate structures and with 
twins. Therefore, reflections not fitting in one 
projection are not excluded from the following vector 
search processes. Each process stands on its own and 
may yield a potential direct vector t. Prior to the final 
cell calculations the t vectors are reduced to a unique 
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set by properly averaging vectors of the same length 
and with the same or opposite direction. 

(c) Final cell f rom the potential direct vectors 

Most t vectors reach only low nv values, because 
the correct one-dimensional lattice is far from always 
being recognized and because the search for a t vector 
is not continued beyond a given limit. 

The final Cel~ is chosen from t vectors with high 
nF values, i.e. from vectors supported by many 
reflections. 'Many '  is quantified as ACL, the 
'acceptance level'. The three shortest independent t 
vectors with nr > ACL determine the final direct cell. 
Usually, but not always (see Examples 1, 2, 3, 4), the 
highest occurring nv can be taken as ACL. If this does 
not succeed lower ACLs are tried stepwise. 

(d) Indexing the reflections and refinement 

The complete list of reflections is indexed with the 
proposed final cell and reflections are accepted if three 
integer indices appear. The cell and orientation matrix 
are refined with all accepted reflections. 

If there are many non-fitting reflections the total 
process may be repeated with the accepted reflections 
only, starting with a new set of triplets. This is 
recommended for incommensurate lattices, misfits 
and twins, where all reflections may fit in only one 
direction, which will lead to a non-primitive cell. The 
smaller correct primitive cell will be found by 
repeating with the reflections fitting in all directions. 
Because the bad influence of strange reflections is now 
eliminated, earlier rejected reflections may be accepted 
and vice versa. 

The routine ends when the reflection list remains 
stable, i.e. with one all-fitting primitive lattice, or one 
main primitive lattice and a set of aliens. It is at this 
point that reflections may definitely be rejected. 
Checks for higher Bravais symmetry, identification of 
aliens or satellites, establishing of twin lattice relations 
and analysis of fragmentation are performed by other 
programs. 

If the aliens do not constitute one single lattice, the 
main lattice is found even in the presence of a majority 
of outsiders. Here the qualification 'aliens' does not 
refer to the relative number of them but to a low 
degree of organization. 

From 2600 triplets (obtained from 25 reflections 
plus the origin) the resulting number of useful direct 
vectors varies from several hundred, with ideal lattices 
(for which, in fact, D I R A X  is not needed and any 
indexing method will do), to a few, as in Example 2. 
In the end we use only three of them, but it is not 
before the final calculation that we know which ones. 

Formulas, definitions and parameters 

The principle applied in D I R A X  is very simple: to 
search for periodicity in directions perpendicular to 

triplets. This section explains practical details about 
the calculations as implemented in the program. 

The unit normal N to the plane formed by the end 
points of three vectors vi, v~ and v k is given by 

N = 
V i X Vj -~ Vj X Yk -~- Yk X V i 

I Vi X Yj -'~ Yj X Yk "q- Yk X Vii 

with 0 < i < j < k < P ,  P being the number of 
observed reflections and Vo the origin 'reflection'. If 
IViXVj+Vj×Vk+VR X ViI <0.0001 (an arbitrary 
'zero') the triplet (i,j, k) is discarded. 

In the t vector searching process no reciprocal 
* = 1/dma x tried, dma x distances shorter than dmi n a r e  

should be about twice the maximum expected axis 
length, in order not to miss the longest axis (an overly 
large value leads to unnecessary calculations), t 
vectors with less than five supporting reflections are 
neglected. 

The projections of the P reflection vectors onto N 
are defined as  ap = Vp. N ,  with p = 1, 2 . . . . .  P. The 
greatest distance between two consecutive a r (after 
sorting) is called dstar t. If dstart > d m i n  residues 
are calculated (sum of absolute distances between ap 
and the nearest proposed one-dimensional lattice 
point), for dstart/n , n = 1, 2 . . . .  , as long as  d*art/n > 
dmin and n < 13. The n giving the lowest residue 
determines d* = d*art/n. Finally, the t vector is found 
from t = N/d*. 

A projected reflection fits a one-dimensional lattice 
with elementary lattice vector d* if its absolute 
distance to the nearest lattice point is less than I d* 1/24. 
The adjustable parameter 1/24 is called 'LevelFit '  A 
reflection fits the final cell if all indices differ less than 
0.1 ( ' lndexFit ' ,  adjustable) from an integer. The n r 
statistics give the number of t vectors with exactly 
5, 6, 7 . . . .  etc. fitting reflections, from which the 
acceptance level ACL is derived as described before. 
The values for LevelFit and lndexFit are not very 
critical. From our tests, values of respectively 1/24 and 
0.1 proved to be adequate and these are always tried 
by default. If necessary, with very stubborn cases, 
optimal values for LevelFit and lndexFit are found 
from trial and error (see Examples). 

D I R A X  exists in two stand-alone versions. 
(1) One version for personal computers (IBM 

PC-AT and compatibles) written in Borland Turbo 
Pascal 5.5, for program development, delicate 
problems and demonstration, with ample graphical 
output on the color screen which greatly facilitates the 
inspection of data and of intermediate and final 
results. It takes from one to five minutes, dependent 
on the operator's (re)actions, on an Olivetti PCS 286 
with mathematical co-processor lnte180287. 

The up-to-date executable file DIRAX.EXE is 
available from the author (e-mail duisenberg(a 
HUTRUU54.BITNET).  
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(2) Another version is for practical use with twins, 
fragments, misfits, ill-shaped reflections etc., written 
in Fortran77 and running under DEC VMS 4.7 on 
the CAD4's Digital Equipment Corporation Micro- 
VAXII. It reads and writes directly from and to 
reflection files and requires about 60 s CPU time. 

Delft Instruments (Enraf-Nonius) intends to inte- 
grate this version into the CAD4 program system, but 
it can already be obtained from the author in its 
present form. 

Both versions expect an (inter)active user. We do 
not feel this is a disadvantage. On the contrary, the 
sort of problems D I R A X  solves is often of a 
specialized crystallographic nature, where an expert's 
supervision is desirable. 

Explanation of the examples 

The observed setting angles for a reflection 
vector are expressed in bisecting mode: 0, ~0 B, Zn 
(theta, phib, chib in the Examples, as in the program 
output), comparable to polar coordinates. These are 
more easily visualized than Eulerian angles, not to 
mention CAD4 angles. 

The bisecting angles transform to a Cartesian 
system X YZ (X to the X-ray source, Z to the Zenith 
and Y completing the right-handed sYstem; CAD4 
convention) as 

cx = - s  cos Zn sin tpB, cy = + s cos ZB cos tPb, 

Cz = + s sin xn, 

with s = 2(sin 0)/2, the length of the reflection vector. 
The final reciprocal and direct orientation matrices 

are R and D = R-~, respectively. 
The fractional h, k, ! (given for non-fitting reflec- 

tions too) are obtained from h = Dc, with h and 
c the vector representation of (h, k, !) and (Cx, cy, G) 
respectively. 

The deviations AO, Aog, AZ (dth, dora, dch in the 
Examples) refer to the differences between the 
observed reflection angles and those calculated with 
integer h, k, 1, for fitting reflections. The great-circle 
angle Ao9 is given instead of Acp, because it is 
independent of X: A~o = At# cos XB. 

An asterisk indicates a non-fitting reflection. 
The resulting cell is primitive, higher Bravais 

symmetry is ignored. 
lndexFit: a reflection fits the final main lattice 

if all indices differ less than lndexFit from an integer. 

LevelFit: a reflection fits a reciprocal level 
(parallel to a triplet) if its fractional distance to that 
level is less than LevelFit. 

Dmax: direct vectors longer than Dmax are not 
calculated. 

ACL: for the final cell calculation only t vectors 
supported by at least ACL reflections were used. 

nF statistics (see Example 1): '6 32' means: 32 
unique t vectors were found each with exactly six 
fitting reflections, ' 16 - '  means: no t vectors with 
exactly 16 fitting reflections were found etc. (Which 
reflections did fit a particular t vector is not shown in 
the table, but with the D I R A X  PC version is shown 
in optional screen pictures. Exploitation of this 
knowledge for particular problems is a subject for 
further studies.) 

Concluding remarks 

D I R A X  proves to be a robust easily manageable 
indexing program suitable for a wide variety of 
indexing problems. It extracts the maximum of 
information from the input with the minimum of 
assumptions. No reflections are excluded at the outset 
and no initial cell is used. 

The high level of performance of the method must 
be attributed to the many checks for consistency of 
intermediate results with the whole body of data taken 
before drawing conclusions. 

I thank Dr Jan Louwert de Boer from the 
University of Groningen for stimulating and enlight- 
ening discussions, especially concerning problems 
such as Example 3 for which, moreover, he kindly 
supplied the data. The Fortran version of the program 
was written by Dr A. M. M. Schreurs of our 
laboratory. 
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