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1. Introduction

A critical step in crystallographic protein-structure determi-
nation is deriving phase information for the measured
amplitude data. Direct calculation of phases or phase
improvement depends on the use of prior information about
the content of the unit cell. The simplest form of information,
i.e. non-negativity and atomicity, is sufficient when diffraction
data is available to very high resolution (Bragg spacing
d < 13 A). The methods of Shake-and-Bake (Weeks et al.,
1993) and Half-baked (Sheldrick & Gould, 1995) solve protein
structures using near-atomic resolution by combining phase
refinement in reciprocal space and an elementary form of
density modification in real space, i.e. atom positioning by
peak picking in the electron-density map. Alternatively, for
approximate phasing of low-resolution diffraction data, prior
information about connectivity and globbicity of protein
structures has been applied using few-atom models (Lunin et
al., 1995; Subbiah, 1991). More typically in protein crystallo-
graphy, structure determination uses initial phases that are
derived by either experimental methods (reviewed by Ke,
1997; Hendrickson & Ogata, 1997) or through the use of a
known homologous structure (reviewed by Rossmann, 1990).
Improvement of these initial phase estimates may be achieved
by including prior knowledge of e.g. flatness of the electron
density in the bulk-solvent region or non-crystallographic
symmetry among independent molecules by the technique of
density modification (see for example Abrahams & de Graaf,
© 2001 International Union of Crystallography 1998). At the last stage, i.e. in protein-structure refinement, the
Printed in Denmark — all rights reserved prior knowledge of protein structures is used in the form of,
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for example, specific bond lengths, bond angles and dihedral
angles (reviewed by Briinger, Adams & Rice, 1998). In these
processes of phase improvement, the prior knowledge is
essential to supplement the limited amount of diffraction
information available when the resolution of the diffraction
data is insufficient.

Here, we focus on the application of the prior knowledge of
protein structures, i.e. the arrangement of protein atoms in
polypeptide chains with secondary-structural elements. This
information is most easily expressed in real space using atomic
models. Optimization of these models against the available
X-ray data and the geometrical restraints is, however,
complicated by the presence of many local minima. Therefore,
the refinement procedures have limited convergence radii and
optimization depends on iterative model building and refine-
ment. It is probable that the search problem will be greatly
reduced when using loose atoms instead of polypeptide chains
with fixed topologies (see Isaacs & Agarwal, 1977, for an early
use of loose-atom refinement). However, in the absence of a
topology the existing methods cannot apply the available
geometrical information. As a compromise, the ARP/WARP
method (Perrakis et al, 1999) uses a hybrid model of
restrained structural fragments and loose atoms. This has
allowed structure building and refinement in an automated
fashion when data to ~2.3 A resolution and initial phase
estimates are available. Critical in this process is the infor-
mation content that allows approximate positioning of loose
atoms and subsequent identification of structural fragments. A
procedure in which more information can be applied to loose
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Figure 1

Formation of a peptide plane by binary combinations of four loose atoms,
three bonds and two bond angles. For each binary combination of two
sub-elements of length L — 1 into one element of length L, a condition is
assigned. These conditions represent geometrical criteria, depending for
example on the interatomic distance between the two outer atoms of an
element. The resemblance of four atoms i, j, kK and / to a peptide plane is
given by multiplying the conditions into a joint condition, as defined
in (1).

atoms may depend less on the resolution of the diffraction
data and the quality of the initial phase set.

Here, we present a new formalism that allows conditional
formulation of target functions in structure optimization.
Using this formalism, we can express the geometrical infor-
mation of protein structures in terms of loose atoms. Our
approach overcomes the problem that in general a chemical
topology cannot be assigned unambiguously to loose atoms.
We consider all possible interpretations, based on the struc-
tural similarity between the distribution of loose atoms and
that of given protein fragments. Weighted geometrical
restraints are applied in the optimization according to the
extent by which the individual interpretations could be made.
In effect, the formalism presented here yields an N-particle
solution to the problem of assigning a topology to a given
atomic coordinate set. Thereby, the method of conditional
optimization combines the search efficiency of loose atoms
with the possibility of including large amounts of geometrical
information. The information expressed using the conditional
formalism includes structural fragments of protein structures
from single bonds up to secondary-structural elements. We
show that for a simple test case this method yields reliable
phases when starting from random atom distributions.

2. Conditional formalism

In the conditional formalism, we describe a protein structure
by linear elements which are non-branched sequences of
atoms occurring in the protein structure. A protein structure
contains various types of these linear elements with char-
acteristic geometrical arrangements of the atoms (one
example of such a type is the typical arrangement of the atoms
CA—C—N-—CA in a peptide plane). Using simple geometric
criteria, we express the structural resemblance of a set of loose
atoms to any of the expected structural elements in a protein
structure. The amino-acid sequence and predicted secondary-
structure content determine the types of elements that may be
expected for a given protein. The geometrical arrangements of
these types can be deduced from known protein structures.
The best arrangement of loose atoms, corresponding to the
minimum of the target function, is a distribution with exactly

C(rl,,,)
1

Figure 2

Conditions C(r;) are defined by an optimal range of distances from ry;, to
Tmax and a fourth-order polynomial slope with a width of o,: C(r;) = 0 for
T < Tmin — 0,5 C(ry) = {1 — [("rmax — U)/a,] } for rmin — 0, < 7y < Fmin}
C(rl/) =1 for rmin < 1 < Fmag C(ry) = {1 — [(Frin — r,-j-)/o,]z}2 for

Tmax < rij < Fmax + Oy, C(rij) =0 for rl] 2 Fmax + O

Acta Cryst. (2001). D57, 1820-1828

Scheres & Gros - Conditional optimization 1821



research papers

d
Ar‘

Figure 3

Neighbouring atoms j around atom i are counted using a continuous
function nf: nf(ry) = 1 for ry < d;nd(ry) = {1 — [(d — ry)loa’} ford <r; <
d + o4 nf (r,]) =0 for r; > d + o0, The total number of neighbours,
Ni =Y, nf’(r[j), is used to calculate a neighbour condition C?(N¢). Given
an optimal range for the number of neighbouring atoms N, to Np.x and
a width oy for the fourth-order polynomial slope, this condition can be
calculated using the functional form as described in Fig. 2.

Figure 4

A dihedral angle x;;,, is defined for the four outermost atoms i, j, p and ¢
of any linear element j. .. pq of length L = > 3. Given an optimal value
Xopt for this dihedral angle, a condition C}™()x;,,) can be defined as

CI)P (Xz]pq) - { [(Xopl - X!/pq)/ﬂ] }

the expected number of structural elements present as given
by the protein sequence and expected secondary structure.

We define a linear structural element as a non-branched
sequence of atoms ij . ..pq of L bonds long, containing L + 1
atoms. A linear structural element of atoms ij. .. pg of length
L is composed of two linear sub-elements ij...p and j...pq,
both of length L — 1 (see Fig. 1). We define conditions C,
which are continuous functions with C = [0, 1], assigned to
each of these elements. Conditions C reflect the degree to
which a geometrical criterion is fulfilled associated with
forming a specific type of element from its two sub-elements.
When considering only distance criteria, the conditions C
become pairwise atomic interaction functions (see Fig. 2). A
linear element of length L is then described by a joint
condition JC, which is a product of conditions C according to
the binary decomposition of the linear element into its sub-
elements. Thus, the (L + 1)-particle function JC; , for a
linear structure consisting of atoms i ... q forming L bonds is
expressed in a (binomial) product of L(L + 1)/2 pairwise
functions.

Fig. 1 shows an example of a binary combination of four
atoms i, j, k and / resembling the atoms CA—C—N—CA in a
peptide plane. A peptide plane, CA—C-N-CA, is composed of

Initial B, ccf. 6, and wa

| Update B, multiple-model ¢, and wa

10 000 steps dyn.
| Update B, std. 6, and wa F—

10 000 steps dyn. ) =——vd

Update B, std. 6, and wa

Figure 5

Refinement protocols for (a) scrambled models and (b) random atom
distributions. Conditional energy minimization (min.) and dynamics
simulation (dyn.) are alternated with overall isotropic temperature-factor
optimization (B), determination of the weight for the X-ray term in the
target function (wa) and estimation of o 4s using the standard SIGMAA
procedure (std.), our modified procedure (multiple-model) or correlation
coefficients between the observed and calculated normalized structure
factors until 5 A resolution (ccf.).

Initial B, std. 6, and wa

Update B, std. 6, and wa

2x

Update B, sid. 6, and wa
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six types of linear elements: bonds CA—C, C—N and N—CA,
bond angles CA—C—N and C—N—CA and peptide plane
CA—C—N—CA. For each type of element, a pairwise inter-
action function C""* is assigned. The resemblance of the four
atoms to a peptide plane can then be expressed by the
following multiplication of functions C“P¢, yielding joint
condition JCy3~“N"“* which depends on all six interatomic

distances 7, ¥jx, Ty Tiro T and 7y,

JCl(j:kAl C—-N-CA CCA C(r )CC N(r,k)CCA C— N(rk)CC N( k)

XCN_CA(rkl)CC N CA(rjz)CCA N CA(riz)- )

Generalized forms of the joint conditions for linear elements
of L =2 and L > 3 are shown in (2a) and (2b), respectively. An
element of length L of a specific type is formed by combina-
tion of its two sub-elements of subtype-A and subtype-B, both
of length L — 1,

JCL};(PE Csubtype-A (r. .)Csubtype-B (r/'k) Ctype (rik) , (Za)
JCIPe = JCOP AT B e (), (2b)

where JC;° is the joint condition of linear element ijk of
length L = 2. CUPWPeA(ry), C9<B(r,) and CP(ry) are
pairwise conditions defined for the terminal atoms i and j, j
and k, i and k of elements ij, jk and ijk with lengths L of 1, 1
and 2, respectively; JC;', | JCf/"b;ype and JC]S"?;qype Pare joint
conditions of linear elements ij...pq, ij...p and j...pq of
lengths L, L — 1 and L — 1, respectively, and C®"(r;,) is a
pairwise condition defined for the terminal atoms i and g of
elements ij. .. pq of length L.
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Optimizations of scrambled models with different initial coordinate
errors against 2.0 A resolution diffraction data. Overall amplitude-
weighted phase errors are shown for the starting models (solid lines) and
the refined structures (crosses) using (a) three, (b) six and (¢) nine layers
of conditions, where each run was performed three times starting from
different random velocities.

To describe a complete protein structure, we define target
functions expressing the expected occurrence of linear struc-
tural elements. For each type of linear element of length L, a
target function E¥?° is defined,

EWpe — ytvpe [ potype _

type
Z ‘ICL]yppq ’ (3)

ij...rq

where w'° is a weighting factor and TC""* is the expected
sum of joint conditions for this particular type of element of
length L in the target structure and where the summation runs
over all combinations of L + 1 atoms ij . . . pq. The total target
function E for a given protein structure is then given by the
summation of over all expected types,

2

E = Z Etype — Z wiype [21; ]Cll]ypiq . (4)

type type
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Optimizations of a scrambled model with an initial coordinate error of
1.4 A rmsd. against 2.0 A resolution diffraction data. Amplitude-
weighted phase errors per resolution shell are shown for the initial model
(solid line) and the refined models (dashed lines) using three (triangles),
six (squares) and nine (circles) layers of conditions, corresponding to the
runs with the lowest overall amplitude-weighted phase error in Fig. 6.

Since the joint conditions J Cl]yppq are expressed as products of
continuous and non-negative functions C, the derivatives with
respect to interatomic distances for non-zero joint conditions
may be computed according to

n]CtYPC 8Csubtype(rkl)

Csumype(” 1) ory,

type
Z]Ct/yppq_ Z

3rk, ’ ®)
where the summation on the right-hand side runs over linear
elements ...k...[..., which form a subset of linear elements
ij ... pq that contain both atoms k and /; C“®¥P¢ is a condition
contributing to JC"%°, depending on the interatomic vector
riand n is the power of C**"P¢ in the binomial distribution of
JC®%, . The derivative of the target function given in (3) is

QL ) type Tctype JCI)’Pe
ar - Z w Z ij...pq
Kkl kel ij...pq
nJC2R . ACHN(ry)
Csubtype(ry,) ory
1 acsubtype(r )
_ ~type kil
- Gk[ Csubtypc(r ) or > (6)
kl ki

where G2 is the sum of gradient coefficients from all linear
elements depending on C*"®P¢(r,,). (6) shows that the effec-
tive weight on a gradient for a particular subtype depends on
the extent to which this particular subtype-element is incor-
porated into larger structural elements. Total gradients can be
calculated efficiently because in the summation over all types
of linear elements (see equation 4) gradient coefficients G;J*
can be pre-calculated for all subtypes, so that for each inter-
acting pair of atoms k/ only a summation over the subtypes
needs to be performed.

Acta Cryst. (2001). D57, 1820-1828
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The formulation given above is not restricted to pairwise
distance functions. We have extended the description of
protein structures with conditions for packing densities and
chirality. For all atoms #, atomic conditions C;"*"*"* (L = 0) are
defined, depending on the expected number of neighbouring
atoms around an atom of a specific atomtype (see Fig. 3).
Thereby, linear elements of a single bond (L = 1) are then

summed over all defined conditional layers L; for a simple all-
helical polyalanine model My,.s = 71, when defining L = 9
conditional layers). The full binary tree with (non-zero) joint
conditions is stored in memory at each pass. My, is a fixed
number given the complexity and the number of conditional
layers defined. Thus, the order of the algorithm is O(N) = N.

described by a joint condition

type atomtype-A ,~atomtype-B ~type
JCUPE = CHomtpeA CatomypeB ciype (1. )

Conditions C}* are defined that describe the chirality of
linear structures ij . .. pg with L > 3 (see Fig. 4). Thereby, (2)

becomes

type __ subtype—A subtype—B ~type type
JC = JC TGP Y, ) O (xy 1y 1),

ij...pq ij..p

where chirality condition C}* depends on the positional

vectors r;, rj, 1, and r,.

3. Experimental
3.1. Implementation

The formalism as described in the previous
section has been implemented as a non-bonded
routine in the CNS program (Brunger, Adams,

Clore et al., 1998). A slight modification of (2) is
used for the target functions,

TCYe — Y JCR",

- ij...pq
ij...pq

TCwwe

EYP® = — TC*. (9)
By dividing by TC""°, the pseudo-potential
energy function depends linearly on the size
and complexity of the system. Energies E%P°
range from zero (e.g. when none of the joint
conditions is fulfilled) to —7TCYP® (all joint
conditions fulfilled).

To compute all non-zero joint conditions, a
binary tree is generated starting from the atom-
pair list. Joint conditions, see (7) and (8), are
computed for all defined types moving from the
bottom layer, i.e. atoms (L = 0), ‘upwards’ to
higher levels of bonded conditions (L > 1).
Energies are computed, see (4) and (9), when
all joint conditions are known. Gradients are
computed moving ‘downwards’ from the
defined top level to the bottom layer, see (6).
The gradient coefficients G¥P° are computed by
summation while moving downwards through
the binary tree. For each node in the tree the
gradient is computed once.

The number of interactions equals the total
number of nodes, which is of the order of the
number of atoms, N,ioms, times the number of
types, Miypes (Where the number of types are

3.2. Test case

) A target structure was built starting from the published
coordinates of a four-helix bundle Alpha-1 crystallized in
space group P1 with unit-cell parameters a = 20.846, b =20.909,
¢ =27.057 A, a = 102.40, 8 = 95.33, y = 119.62° (PDB code
1byz; Privé et al., 1999). All 48 amino acids of this peptide were
replaced by alanines and all atomic B factors were set to
15 A% The structure-factor amplitudes were taken from
(©)] calculated X-ray data to 2.0 A resolution.

Two types of starting models were generated for testing
purposes. Firstly, scrambled starting models with increasing
coordinate errors were made by applying random coordinate
shifts of increasing magnitude to all atoms in the unit cell. For
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Figure 8

Stereoviews of (a) the initial scrambled model with a coordinate error of 1.4 A r.m.s.d., (b)
its refined structure (in black) superimposed on the target structure (in grey) and (c) the
same structure in ball-and-stick representation with automatic assignment of atom types
based on the scores of joint conditions (white, unassigned; light grey, carbon; dark grey,
nitrogen; black, oxygen). Atoms within 1.8 A interatomic distance are connected.
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Table 1
Conditional force field for alanines in a helical conformation.

(a) Parameters Ny, Nmax and oy for atom types N, CA, C, O and CB, defining the atomic conditions for five neighbour shells with different d + o, (see Fig. 3).

d+ oy 1.6 +0.5 2.6 +0.7 3.6 +0.7 43 +0.7 5.0+ 0.7

Atom type Nmin Nmax oN Nmin Nmax oN Nmin Nmax oN Nmin Nmax oN Nmin Nmax oN
N 1.0 2.0 4.0 6.5 9.5 8.0 10.0 16.0 8.0 10.0 25.0 8.0 10.0 32.0 8.0
CA 3.0 3.0 4.0 6.7 7.1 8.0 8.5 11.5 8.0 10.0 25.0 8.0 15.0 32.0 8.0
C 3.0 3.0 4.0 6.0 8.0 8.0 9.0 15.0 8.0 10.0 25.0 8.0 17.0 33.0 8.0
(6] 1.0 1.0 2.5 3.5 6.5 8.0 7.0 19.0 8.0 10.0 25.0 8.0 15.0 33.0 8.0
CB 1.0 1.0 2.5 3.0 4.0 8.0 5.0 9.5 8.0 6.5 19.5 8.0 9.0 29.0 8.0

(b) Parameters 7'yin, Fmax, 0 and Xop (see Figs. 2 and 4), describing the bonded conditions for all types of linear elements with L = 1-9.

Type Subtype-A  Subtype-B  ryin  Fmax O Xopt Type Subtype-A  Subtype-B  rpin  Fyax 0y Xopt
Layer (L) (L-1 (L-1 A A A O Layer (L) (L-1) (L-1) “ & » O
L=1 N-CA N CA 143 151  0.05 L=6 N-O N—-C CA-O 563 597 030 158
CA-C CA C 151 155 0.05 CA—CA CA-N C—CA 527 569 030 78
C-0 C (0] 121 127 0.5 N—N N—-C CA—N 413 453 030 30
C—N C N 131 135  0.05 Cc-C C—CA N-C 437 475 030 22
CA—-CB CA CB 151 157  0.05 O—CA O—N C—CA 411 469 030 —50
L=2 N-C N—CA CA—-C 241 253  0.08 CB—-0O CB-—-C CA—-O 611 651 030 —86
CA-O CA-C C-0 235 245 008 CB—N CB—-C CA—N 547 581 030 146
CA—N CA—-C C—N 239 249  0.08 C—CB C—CA N—-CB 499 553 030 —94
C—CA C—N N—CA 239 249  0.08 L=7 CA-C CA—CA Cc-C 525 577 035 90
O—N O—Ct C—N 221 231 008 C—N Cc-C N—N 3.63 407 035 —14
0-0 O—Ct C-0 210 230 0.08 N—CA N—N CA—CA 513 561 035 86
N—CB N—CA CA—CB 239 255  0.08 o0-C O—CA Cc-C 383 439 035 -30
CB-C CB—CA} CA-C 243 261 0.08 C-0O Cc-C N—-O 543 585 035 98
L=3 N-O N—-C CA-O 343 361 015 138 CB—CA CB-—N CA—CA 6.65 7.05 035 —166
N—N N—-C CA—N 271 293 015 —42 CA—CB CA—-CA C—CB 557 627 035 —18
CA—CA CA-N C—CA 375 387 015 178 O—CB O—-CA C—CB 505 581 035 —138
Cc-C C—CA N—-C 291 315 015 —62 L=8 N-C N—CA CA—-C 543 585 040 130
O—CA O—N C—CA 269 285 015 -2 0-0 O0-C C-0 473 526 040 22
CB—-O CB-C CA-O 315 347 015 —98 CA—-O CA—-C C-0O 637 691 040 130
CB—N CB-—-C CA—N 3.01 337 015 82 CA—N CA—-C C—N 427 485 040 42
C—CB C—-CA N—-CB 363 379 015 174 C—CA C—N N—-CA 433 487 040 22
L=4 N-CA N—N CA—CA 411 433 020 138 O—N 0-C C—N 299 365 040 =70
CA-C CA—CA Cc-C 429 453 020 122 CB—CB CB—-CA CA—CB 7.05 7.66  0.40 130
C-0O c-C N—-O 3.69 405 020 62 N—CB N—-CA CA—CB 505 577 040 22
0-C O—CA c-C 281 315 020 —58 CB-C CB—CA CA—-C 671 715 040 —122
C—N c-C N—N 313 347 020 -90 L=9 N-O N—-C CA-O 6.65 7.09 045 166
CA—CB CA—-CA C—CB 477 499 020 —10 CA—CA CA-N C—-CA 485 555 045 74
CB—CA CB-—N CA—CA 431 471 020 —110 c-C C—CA N—-C 467 517 045 90
O—CB O—CA C—CB 417 435 020 174 N—N N-C CA—N 461 507 045 110
L=5 N-C N—CA CA—-C 459 485 025 82 O—CA O—N C—CA 347 409 045 —38
CA—-O CA-C C—-0O 517 551 025 142 CB-0O CB—-C CA—-O 779 827 045 —58
0-0 0-C C-0O 317 371 025 14 CB—N CB—-C CA—N 571 631 045 —114
CA—N CA—-C C—N 419 459 025 14 C—CB C—CA N—-CB 397 481 045 22
O—N 0-C C—N 321 371 025 —114
C—CA C—N N—CA 431 467 025 —6
N—-CB N—CA CA—CB 481 519 025 —46
CB—-C CB—CA CA—-C 531 561 025 —166
CB—CB CB—CA CA—-CB 513 567 025 66

+ For types O—C and CB—CA the same parameters were used as for types C—O and CA—CB, respectively.

these starting structures a minimum interatomic distance of
1.4 A was enforced. Secondly, random atom distributions were
made by randomly placing 264 atoms in the unit cell, while
enforcing a minimum interatomic distance of 1.8 A. All atoms
in the starting structures were given equal labels and carbon
scattering factors were assigned to all of them.

3.3. Refinement protocols

The refinement protocols for optimization starting from the
scrambled models and random models are given in Figs. 5(a)

and 5(b). These optimization protocols include standard
procedures: overall B-factor optimization and weight deter-
mination for the X-ray restraint followed by maximum-
likelihood optimization by either energy minimization or
dynamics simulation. Table 1 contains the set of parameters
defining the conditional force field; target values for packing
densities and interatomic distances were determined from
their distributions in several high-resolution structures in the
PDB. Up to nine layers of bonded conditions have been
defined, corresponding to linear elements up to, for example,
C*(i) to C*(i + 3). During the optimization, the width o, of the

Acta Cryst. (2001). D57, 1820-1828
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Optimizations of a scrambled model with an initial coordinate error of
1.0 A r.m.s.d. against diffraction data with different high-resolution limits.
The overall amplitude-weighted phase errors are shown for the initial
model (solid lines) and the refined structures (crosses) using (a) six and
(b) nine layers of conditions, where each run was performed three times
starting from different random velocities.

conditional functions was adjusted according to the estimated
coordinate error (g,) derived from the estimated o, values:

o/ = o, + &L". Atomic B factors were assigned using an

exponentially decreasing function depending on the number
of neighbours N¢ within a shell d (+0,) of 4.3 (+0.7) A:
B; = 150exp(—0.1N¢), with a minimum value of 15 A2 The
time step in these calculations was 0.2 fs and during the
dynamics calculations the temperature was coupled to a
temperature bath (7, = 300 K).

Two aspects were tested for optimization starting from
scrambled models: (i) the effect of resolution by using data
truncated at 3.5,3.0, 2.5 and 2.0 A resolution and (ii) the effect
of the number of conditional layers L: three, six or nine. For
each test condition, three trials were performed using different
random starting velocities. A randomly selected 10% of the
reflections were excluded from refinement and used for
calculation of Ry.. (Briinger, 1993) and cross-validated o4
estimates (Read, 1986; Pannu & Read, 1996).

For optimization starting from randomly placed atoms, all
X-ray data to 2.0 A resolution were included. Compared with
the optimization of scrambled models, three modifications
were made: alternative protocols were defined for estimating
o4 values and for handling the ‘test-set’ reflections and to
allow faster sampling Ty, Was set to 600 K. Standard o4
estimates are based on the correlation coefficient between
observed and calculated normalized structure factors, E,,, and
E_.ic (Read, 1986). For random atom distributions and struc-
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Figure 10

Scatter plot of the amplitude-weighted phase error vs. the free R factor
for the 15 final models that were obtained starting from random atom
distributions.

tures very far away from the correct answer, the binwise
correlation coefficients on normalized structure factors yield
spuriously high values. We used a multiple-model approach to
obtain estimates of the phase error ¢,,s — @cac in the theo-
retical values for o4: 04 = (|EobsllEcaiclc0OS(@obs — @earc))
(Srinivasan & Parthasaraty, 1976). Starting from the coordi-
nate set corresponding to F,., four dynamics runs of 1000
steps each were performed at an elevated temperature of
900 K using different random starting velocities (yielding
structure factors sets F;). From the resulting four models, we
compute the average structure factor F,,. and figure of merit

Maye (mavc = |Favc|/(|Fl|>) BY rewriting ((pobs gacalc) =

(Qoobs - Qoave) + ((pave_ (pcalc) and assuming COS(‘pobs - (pave) ~
M, WE can estimate o4. For a range of test structures far

away from the known answer, these estimates had a reason-
able correlation to the theoretical values as calculated using
known phases ¢,,s of the test cases. The second feature
deviating from normal crystallographic refinement protocols
was the handling of the test-set reflections. A conventional test
set comprising 7% of all reflections was used to calculate Ry,
and to estimate cross-validated o 4 values according to Pannu
& Read (1996) in the later stages of refinement. Additionally,
another 7% of the reflections were taken out of the refine-
ment. After every 1000 steps, the selection of these 7% was
modified. As a result, the reflections used in the crystal-
lographic target function changed every 1000 steps, resulting
in a ‘tacking’ behaviour during refinement and minimizing the
chance of stalled progress owing to local minima in the crys-
tallographic target function.

Calculations were performed on a Compaq XP1000 work-
station with 256 Mb of RAM memory and a single 667 MHz
processor. The CPU time needed was about 4 h for 100 000
steps of optimization.
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(@)

(b)
Figure 11

Stereoviews of (a) a successfully refined structure starting from a random atom
distribution (in black) superimposed on the target structure (in grey) and (b) the same
structure in ball-and-stick representation with automatic assignment of atom types
based on the scores of joint conditions (white, unassigned; light grey, carbon; dark
grey, nitrogen; black, oxygen). Atoms within 1.8 A interatomic distance are

connected.

4. Results
4.1. Refinement of scrambled models

Six scrambled models with coordinate errors of 1.0, 1.2, 1.4,
1.6, 1.8 and 2.0 A root-mean-square deviation (r.m.s.d.) were
generated. The dependence of the method on the number of
conditional layers was tested performing a series of refine-
ments using three, six or nine layers. The resulting amplitude-
weighted phase errors are shown in Fig. 6. Three layers of
conditions are not enough to give significant phase improve-
ment. Using six layers, scrambled models with r.m.s.d.s up to
1.4 A could be improved significantly. Adding another three
layers of conditions led to a small increase in the success rate.
Fig. 7 shows the phase improvement for the refined 1.4 A
r.am.s.d. structure with the lowest free R factor using three, six
or nine layers of conditions. Fig. 8 shows an initial model with
a coordinate error of 1.4 A r.m.s.d and the refined structure
with the lowest free R factor using nine layers of conditions.
This structure is representative for all successful runs: the four
helices are clearly visible, although some are not completed,
contain breaks in the main chain or the N—C direction is
reversed. For structures with a coordinate error larger than
1.4 A r.ms.d., refinement did not yield improvement of the
phases. This coincides with the observation that for models
with large errors the SIGMAA procedure (Pannu & Read,
1996) gave spurious estimates for the o, values (results not
shown).

The dependence on the high-resolution limit of the
diffraction data was tested by refining the 1.0 A r.m.s.d. model

using data truncated at various resolution limits.
Calculations were performed using six or nine
layers of conditions. The resulting phase improve-
ments are shown in Fig. 9. All runs using data to a
resolution of 3.0 A were successful. When using
only 3.5 A data all three runs using six layers of
conditions failed, while using nine layers of condi-
tions resulted in a success rate of two out of three.

4.2. Refinement of random atom distributions

Sixteen different random atom distributions were
refined according to the protocol in Fig. 5(b). One
run was abandoned because standard o4 estimates
could not be obtained by the SIGMAA procedure
after the initial 20 000 steps. Of the remaining 15
models, six yielded a final amplitude-weighted
phase error of smaller than 50° for data to 2.0 A
resolution. This corresponds to a success rate of one
out of three. For these successful runs a condensa-
tion into four rod-like structures was observed
during the initial stages of the refinement process,
thereby establishing a choice of origin for the
triclinic cell. Subsequent dynamics optimization
lead to the formation of helical fragments that were
expanded into near-complete o-helices. Fig. 10
shows a clear correlation between the phase errors
and the overall free R factor obtained for the final
models. The structure with the lowest free R factor
is shown in Fig. 11", This structure clearly shows the four a-
helices and resembles the results obtained from the refine-
ment of the scrambled models. The errors in the model include
chain breaks, incomplete helices and chain reversals.

5. Discussion

We introduced a new method for optimization of protein
structures that overcomes the necessity of a fixed topology for
defining geometrical restraints. This N-particle approach
offers a ‘restrained topology’, where weighted gradients over
all possible assignments are applied to loose atoms. We tested
this method using calculated data and a very simple test case
consisting of four polyalanine helices with 244 non-H atoms in
total. Optimizations starting from scrambled models show that
the method works successfully with diffraction data of at least
3.0 to 3.5 A resolution and with six or nine layers of condi-
tions, corresponding to linear structural elements of the length
of two and three peptide planes, respectively. Moreover, we
have shown that our test structure can be optimized success-
fully starting from randomly distributed atoms when using
2.0 A resolution diffraction data. Important for successful
optimization of random starting models was estimation of
reasonable o, values for very bad models using a multiple-

! A movie showing the formation of the four helices starting from a random
atom distribution is available from the IUCr electronic archive (Reference:
jn0096) and can be viewed in the online version of this paper. Details on how
to access these data are available at the back of the journal.
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model procedure. For trials with different random starts a
success rate of one out of three was observed. The free R
factor readily distinguished correct solutions from false ones.
To our knowledge, we have presented the first method that in
principle allows an ab initio optimization of atomic models
under conditions relevant for protein crystallography (i.e. at
medium resolution).

However, in our experiments we used calculated data
without a bulk-solvent contribution and a small and very
simple test case. Calculations against real protein diffraction
data will require a model for the bulk solvent and the condi-
tional force field will have to be expanded to target functions
that also include the structurally more variable S-sheets, loop
regions and side chains. In analogy with the hybrid model of
the ARP/WARP program, constrained assignments of recog-
nisable structural elements may be included in the optimiza-
tion process in order to improve the rate of convergence, for
example by correcting errors such as chain breaks and rever-
sals. The efficiency of our approach for larger and more
complex systems will have to be demonstrated. Owing to the
possibility of using prior information extensively, conditional
optimization may offer a powerful alternative for phase
improvement, both when initial phase estimates are available
and in ab initio structure determination.

We gratefully thank Drs Bouke van Eijck, Jan Kroon
(deceased 3 May 2001), Wijnand Mooij and Titia Sixma for
stimulating discussions. We also thank Drs Alexandre Bonvin
and Bouke van Eijck for carefully reading the manuscript.

This work is supported by the Netherlands Organization for
Scientific Research (NWO-CW: Jonge Chemici 99-564).

References

Abrahams, J. P. & de Graaf, R. A. G. (1998). Curr. Opin. Struct. Biol.
8, 601-605.

Briinger, A. T. (1993). Acta Cryst. D49, 24-36.

Briinger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P,
Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M.,
Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L.
(1998). Acta Cryst. D54, 905-921.

Briinger, A. T., Adams, P. D. & Rice, L. M. (1998). Curr. Opin. Struct.
Biol. 8, 606-611.

Hendrickson, W. A. & Ogata, C. M. (1997). Methods Enzymol. 276,
494-523.

Isaacs, R. C. & Agarwal, N. W. (1977). Proc. Natl Acad. Sci. USA, 74,
2835-2839.

Ke, K. (1997). Methods Enzymol. 276, 448-461.

Lunin, V. Y., Lunina, N. L., Petrova, T. E., Urzhumtsev, A. G. &
Podjarny, A. D. (1995). Acta Cryst. D51, 896-903.

Pannu, N. S. & Read, R. J. (1996). Acta Cryst. A52, 659-668.

Perrakis, A., Morris, R. & Lamzin, V. S. (1999). Nature Struct. Biol. 6,
458-463.

Privé, G. G., Anderson, D. H., Wesson, L., Cascio, D. & Eisenberg, D.
(1999). Protein Sci. 8, 1400-14009.

Read, R. J. (1986). Acta Cryst. A42, 140-149.

Rossmann, M. G. (1990). Acta Cryst. A46, 73-82.

Sheldrick, G. M. & Gould, R. O. (1995). Acta Cryst. B51, 423-431.

Srinivasan, R. & Parthasaraty, S. (1976). Some Statistical Applications
in X-ray Crystallography. Oxford: Pergamon Press.

Subbiah, S. (1991). Science, 252, 128-133.

Weeks, C. M., DeTitta, G. T., Miller, R. & Hauptmann, H. A. (1993).
Acta Cryst. D49, 179-181.

1828  scheres & Gros « Conditional optimization

Acta Cryst. (2001). D57, 18201828



	mk1

