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Conditional optimization allows unlabelled loose-atom

re®nement to be combined with extensive application of

geometrical restraints. It offers an N-particle solution for the

assignment of topology to loose atoms, with weighted

gradients applied to all possibilities. For a simpli®ed test

structure consisting of a polyalanine four-helical bundle, this

method shows a large radius of convergence using calculated

diffraction data to at least 3.5 AÊ resolution. It is shown that

with a new multiple-model protocol to estimate �A values, this

structure can be successfully optimized against 2.0 AÊ resolu-

tion diffraction data starting from a random atom distribution.

Conditional optimization has potentials for map improvement

and automated model building at low or medium resolution

limits. Future experiments will have to be performed to

explore the possibilities of this method for ab initio phasing of

real protein diffraction data.
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1. Introduction

A critical step in crystallographic protein-structure determi-

nation is deriving phase information for the measured

amplitude data. Direct calculation of phases or phase

improvement depends on the use of prior information about

the content of the unit cell. The simplest form of information,

i.e. non-negativity and atomicity, is suf®cient when diffraction

data is available to very high resolution (Bragg spacing

d < 1.3 AÊ ). The methods of Shake-and-Bake (Weeks et al.,

1993) and Half-baked (Sheldrick & Gould, 1995) solve protein

structures using near-atomic resolution by combining phase

re®nement in reciprocal space and an elementary form of

density modi®cation in real space, i.e. atom positioning by

peak picking in the electron-density map. Alternatively, for

approximate phasing of low-resolution diffraction data, prior

information about connectivity and globbicity of protein

structures has been applied using few-atom models (Lunin et

al., 1995; Subbiah, 1991). More typically in protein crystallo-

graphy, structure determination uses initial phases that are

derived by either experimental methods (reviewed by Ke,

1997; Hendrickson & Ogata, 1997) or through the use of a

known homologous structure (reviewed by Rossmann, 1990).

Improvement of these initial phase estimates may be achieved

by including prior knowledge of e.g. ¯atness of the electron

density in the bulk-solvent region or non-crystallographic

symmetry among independent molecules by the technique of

density modi®cation (see for example Abrahams & de Graaf,

1998). At the last stage, i.e. in protein-structure re®nement, the

prior knowledge of protein structures is used in the form of,



for example, speci®c bond lengths, bond angles and dihedral

angles (reviewed by BruÈ nger, Adams & Rice, 1998). In these

processes of phase improvement, the prior knowledge is

essential to supplement the limited amount of diffraction

information available when the resolution of the diffraction

data is insuf®cient.

Here, we focus on the application of the prior knowledge of

protein structures, i.e. the arrangement of protein atoms in

polypeptide chains with secondary-structural elements. This

information is most easily expressed in real space using atomic

models. Optimization of these models against the available

X-ray data and the geometrical restraints is, however,

complicated by the presence of many local minima. Therefore,

the re®nement procedures have limited convergence radii and

optimization depends on iterative model building and re®ne-

ment. It is probable that the search problem will be greatly

reduced when using loose atoms instead of polypeptide chains

with ®xed topologies (see Isaacs & Agarwal, 1977, for an early

use of loose-atom re®nement). However, in the absence of a

topology the existing methods cannot apply the available

geometrical information. As a compromise, the ARP/wARP

method (Perrakis et al., 1999) uses a hybrid model of

restrained structural fragments and loose atoms. This has

allowed structure building and re®nement in an automated

fashion when data to �2.3 AÊ resolution and initial phase

estimates are available. Critical in this process is the infor-

mation content that allows approximate positioning of loose

atoms and subsequent identi®cation of structural fragments. A

procedure in which more information can be applied to loose

atoms may depend less on the resolution of the diffraction

data and the quality of the initial phase set.

Here, we present a new formalism that allows conditional

formulation of target functions in structure optimization.

Using this formalism, we can express the geometrical infor-

mation of protein structures in terms of loose atoms. Our

approach overcomes the problem that in general a chemical

topology cannot be assigned unambiguously to loose atoms.

We consider all possible interpretations, based on the struc-

tural similarity between the distribution of loose atoms and

that of given protein fragments. Weighted geometrical

restraints are applied in the optimization according to the

extent by which the individual interpretations could be made.

In effect, the formalism presented here yields an N-particle

solution to the problem of assigning a topology to a given

atomic coordinate set. Thereby, the method of conditional

optimization combines the search ef®ciency of loose atoms

with the possibility of including large amounts of geometrical

information. The information expressed using the conditional

formalism includes structural fragments of protein structures

from single bonds up to secondary-structural elements. We

show that for a simple test case this method yields reliable

phases when starting from random atom distributions.

2. Conditional formalism

In the conditional formalism, we describe a protein structure

by linear elements which are non-branched sequences of

atoms occurring in the protein structure. A protein structure

contains various types of these linear elements with char-

acteristic geometrical arrangements of the atoms (one

example of such a type is the typical arrangement of the atoms

CAÐCÐNÐCA in a peptide plane). Using simple geometric

criteria, we express the structural resemblance of a set of loose

atoms to any of the expected structural elements in a protein

structure. The amino-acid sequence and predicted secondary-

structure content determine the types of elements that may be

expected for a given protein. The geometrical arrangements of

these types can be deduced from known protein structures.

The best arrangement of loose atoms, corresponding to the

minimum of the target function, is a distribution with exactly
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Figure 1
Formation of a peptide plane by binary combinations of four loose atoms,
three bonds and two bond angles. For each binary combination of two
sub-elements of length L ÿ 1 into one element of length L, a condition is
assigned. These conditions represent geometrical criteria, depending for
example on the interatomic distance between the two outer atoms of an
element. The resemblance of four atoms i, j, k and l to a peptide plane is
given by multiplying the conditions into a joint condition, as de®ned
in (1).

Figure 2
Conditions C(rij) are de®ned by an optimal range of distances from rmin to
rmax and a fourth-order polynomial slope with a width of �r: C(rij) = 0 for
rij � rmin ÿ �r; C(rij) = {1 ÿ [(rmax ÿ rij)/�r]

2}2 for rmin ÿ �r < rij < rmin;
C(rij) = 1 for rmin � rij � rmax; C(rij) = {1 ÿ [(rmin ÿ rij)/�r]

2}2 for
rmax < rij < rmax + �r; C(rij) = 0 for rij � rmax + �r.
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the expected number of structural elements present as given

by the protein sequence and expected secondary structure.

We de®ne a linear structural element as a non-branched

sequence of atoms ij . . . pq of L bonds long, containing L + 1

atoms. A linear structural element of atoms ij . . . pq of length

L is composed of two linear sub-elements ij . . . p and j . . . pq,

both of length L ÿ 1 (see Fig. 1). We de®ne conditions C,

which are continuous functions with C = [0, 1], assigned to

each of these elements. Conditions C re¯ect the degree to

which a geometrical criterion is ful®lled associated with

forming a speci®c type of element from its two sub-elements.

When considering only distance criteria, the conditions C

become pairwise atomic interaction functions (see Fig. 2). A

linear element of length L is then described by a joint

condition JC, which is a product of conditions C according to

the binary decomposition of the linear element into its sub-

elements. Thus, the (L + 1)-particle function JCi . . . q for a

linear structure consisting of atoms i . . . q forming L bonds is

expressed in a (binomial) product of L(L + 1)/2 pairwise

functions.

Fig. 1 shows an example of a binary combination of four

atoms i, j, k and l resembling the atoms CAÐCÐNÐCA in a

peptide plane. A peptide plane, CA±C±N±CA, is composed of

six types of linear elements: bonds CAÐC, CÐN and NÐCA,

bond angles CAÐCÐN and CÐNÐCA and peptide plane

CAÐCÐNÐCA. For each type of element, a pairwise inter-

action function Ctype is assigned. The resemblance of the four

atoms to a peptide plane can then be expressed by the

following multiplication of functions Ctype, yielding joint

condition JCCAÿCÿNÿCA
ijkl which depends on all six interatomic

distances rij, rjk, rkl, rik, rjl and ril,

JCCAÿCÿNÿCA
ijkl �CCAÿC�rij�CCÿN�rjk�CCAÿCÿN�rik�CCÿN�rjk�

�CNÿCA�rkl�CCÿNÿCA�rjl�CCAÿCÿNÿCA�ril�: �1�

Generalized forms of the joint conditions for linear elements

of L = 2 and L� 3 are shown in (2a) and (2b), respectively. An

element of length L of a speci®c type is formed by combina-

tion of its two sub-elements of subtype-A and subtype-B, both

of length L ÿ 1,

JC
type
ijk � Csubtype-A�rij�Csubtype-B�rjk�Ctype�rik�; �2a�

JC
type
ij:::pq � JC

subtype-A
ij:::p JC

subtype-B
j:::pq Ctype�riq�; �2b�

where JC
type
ijk is the joint condition of linear element ijk of

length L = 2. Csubtype-A�rij�, Csubtype-B�rjk� and Ctype�rik� are

pairwise conditions de®ned for the terminal atoms i and j, j

and k, i and k of elements ij, jk and ijk with lengths L of 1, 1

and 2, respectively; JC
type
ij:::pq, JC

subtypeÿA
ij:::p and JC

subtypeÿB
j:::pq are joint

conditions of linear elements ij . . . pq, ij . . . p and j . . . pq of

lengths L, L ÿ 1 and L ÿ 1, respectively, and Ctype�riq� is a

pairwise condition de®ned for the terminal atoms i and q of

elements ij . . . pq of length L.

Figure 3
Neighbouring atoms j around atom i are counted using a continuous
function nd

i : nd
i (rij) = 1 for rij � d; nd

i (rij) = {1ÿ [(dÿ rij)/�d]2}2 for d < rij <
d + �d; nd

i (rij) = 0 for rij � d + �d. The total number of neighbours,
Nd

i �
P

j nd
i �rij�, is used to calculate a neighbour condition C0

i �Nd
i �. Given

an optimal range for the number of neighbouring atoms Nmin to Nmax and
a width �N for the fourth-order polynomial slope, this condition can be
calculated using the functional form as described in Fig. 2.

Figure 4
A dihedral angle �ijpq is de®ned for the four outermost atoms i, j, p and q
of any linear element ij . . . pq of length L = � 3. Given an optimal value
�opt for this dihedral angle, a condition Ctype

� (�ijpq) can be de®ned as
Ctype
� (�ijpq) = {1 ÿ [(�opt ÿ �ijpq)/�]2}2.

Figure 5
Re®nement protocols for (a) scrambled models and (b) random atom
distributions. Conditional energy minimization (min.) and dynamics
simulation (dyn.) are alternated with overall isotropic temperature-factor
optimization (B), determination of the weight for the X-ray term in the
target function (wa) and estimation of �As using the standard SIGMAA
procedure (std.), our modi®ed procedure (multiple-model) or correlation
coef®cients between the observed and calculated normalized structure
factors until 5 AÊ resolution (ccf.).



To describe a complete protein structure, we de®ne target

functions expressing the expected occurrence of linear struc-

tural elements. For each type of linear element of length L, a

target function Etype is de®ned,

Etype � wtype TCtype ÿ P
ij:::pq

JC
type
ij:::pq

 !2

; �3�

where wtype is a weighting factor and TCtype is the expected

sum of joint conditions for this particular type of element of

length L in the target structure and where the summation runs

over all combinations of L + 1 atoms ij . . . pq. The total target

function E for a given protein structure is then given by the

summation of over all expected types,

E � P
type

Etype � P
type

wtype TCtype ÿ P
ij:::pq

JC
type
ij:::pq

 !2

: �4�

Since the joint conditions JC
type
ij:::pq are expressed as products of

continuous and non-negative functions C, the derivatives with

respect to interatomic distances for non-zero joint conditions

may be computed according to

@

@rkl

P
ij:::pq

JC
type
ij:::pq �

P
:::k:::l:::

nJC
type
:::k:::l:::

Csubtype�rkl�
@Csubtype�rkl�

@rkl

; �5�

where the summation on the right-hand side runs over linear

elements . . . k . . . l . . . , which form a subset of linear elements

ij . . . pq that contain both atoms k and l; C subtype is a condition

contributing to JC
type
:::k:::l::: depending on the interatomic vector

rkl and n is the power of C subtype in the binomial distribution of

JC
type
:::k:::l:::. The derivative of the target function given in (3) is

@Etype

@rkl

� ÿ2
P

:::k:::l:::

wtype TCtype ÿ P
ij:::pq

JC
type
ij:::pq

 !

� nJC
type
:::k:::l:::

Csubtype�rkl�
@Csubtype�rkl�

@rkl

� G
type
kl

1

Csubtype�rkl�
@Csubtype�rkl�

@rkl

; �6�

where G
type
kl is the sum of gradient coef®cients from all linear

elements depending on Csubtype(rkl). (6) shows that the effec-

tive weight on a gradient for a particular subtype depends on

the extent to which this particular subtype-element is incor-

porated into larger structural elements. Total gradients can be

calculated ef®ciently because in the summation over all types

of linear elements (see equation 4) gradient coef®cients G
type
kl

can be pre-calculated for all subtypes, so that for each inter-

acting pair of atoms kl only a summation over the subtypes

needs to be performed.
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Figure 6
Optimizations of scrambled models with different initial coordinate
errors against 2.0 AÊ resolution diffraction data. Overall amplitude-
weighted phase errors are shown for the starting models (solid lines) and
the re®ned structures (crosses) using (a) three, (b) six and (c) nine layers
of conditions, where each run was performed three times starting from
different random velocities.

Figure 7
Optimizations of a scrambled model with an initial coordinate error of
1.4 AÊ r.m.s.d. against 2.0 AÊ resolution diffraction data. Amplitude-
weighted phase errors per resolution shell are shown for the initial model
(solid line) and the re®ned models (dashed lines) using three (triangles),
six (squares) and nine (circles) layers of conditions, corresponding to the
runs with the lowest overall amplitude-weighted phase error in Fig. 6.
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The formulation given above is not restricted to pairwise

distance functions. We have extended the description of

protein structures with conditions for packing densities and

chirality. For all atoms i, atomic conditions C
atomtype
i (L = 0) are

de®ned, depending on the expected number of neighbouring

atoms around an atom of a speci®c atomtype (see Fig. 3).

Thereby, linear elements of a single bond (L = 1) are then

described by a joint condition

JC
type
ij � C

atomtype-A
i C

atomtype-B
j Ctype�rij�: �7�

Conditions Ctype
� are de®ned that describe the chirality of

linear structures ij . . . pq with L � 3 (see Fig. 4). Thereby, (2)

becomes

JC
type
ij:::pq � JC

subtypeÿA
ij:::p JC

subtypeÿB
j:::pq Ctype�riq�Ctype

� �ri; rj; rp; rq�;
�8�

where chirality condition Ctype
� depends on the positional

vectors ri, rj, rp and rq.

3. Experimental

3.1. Implementation

The formalism as described in the previous

section has been implemented as a non-bonded

routine in the CNS program (Brunger, Adams,

Clore et al., 1998). A slight modi®cation of (2) is

used for the target functions,

Etype �
TCtype ÿ P

ij:::pq

JC
type
ij:::pq

 !2

TCtype
ÿ TCtype: �9�

By dividing by TCtype, the pseudo-potential

energy function depends linearly on the size

and complexity of the system. Energies Etype

range from zero (e.g. when none of the joint

conditions is ful®lled) to ÿTCtype (all joint

conditions ful®lled).

To compute all non-zero joint conditions, a

binary tree is generated starting from the atom-

pair list. Joint conditions, see (7) and (8), are

computed for all de®ned types moving from the

bottom layer, i.e. atoms (L = 0), `upwards' to

higher levels of bonded conditions (L � 1).

Energies are computed, see (4) and (9), when

all joint conditions are known. Gradients are

computed moving `downwards' from the

de®ned top level to the bottom layer, see (6).

The gradient coef®cients Gtype are computed by

summation while moving downwards through

the binary tree. For each node in the tree the

gradient is computed once.

The number of interactions equals the total

number of nodes, which is of the order of the

number of atoms, Natoms, times the number of

types, Mtypes (where the number of types are

summed over all de®ned conditional layers L; for a simple all-

helical polyalanine model Mtypes = 71, when de®ning L = 9

conditional layers). The full binary tree with (non-zero) joint

conditions is stored in memory at each pass. Mtypes is a ®xed

number given the complexity and the number of conditional

layers de®ned. Thus, the order of the algorithm is O(N) = N.

3.2. Test case

A target structure was built starting from the published

coordinates of a four-helix bundle Alpha-1 crystallized in

space group P1 with unit-cell parameters a = 20.846, b = 20.909,

c = 27.057 AÊ , � = 102.40, � = 95.33,  = 119.62� (PDB code

1byz; PriveÂ et al., 1999). All 48 amino acids of this peptide were

replaced by alanines and all atomic B factors were set to

15 AÊ 2. The structure-factor amplitudes were taken from

calculated X-ray data to 2.0 AÊ resolution.

Two types of starting models were generated for testing

purposes. Firstly, scrambled starting models with increasing

coordinate errors were made by applying random coordinate

shifts of increasing magnitude to all atoms in the unit cell. For

Figure 8
Stereoviews of (a) the initial scrambled model with a coordinate error of 1.4 AÊ r.m.s.d., (b)
its re®ned structure (in black) superimposed on the target structure (in grey) and (c) the
same structure in ball-and-stick representation with automatic assignment of atom types
based on the scores of joint conditions (white, unassigned; light grey, carbon; dark grey,
nitrogen; black, oxygen). Atoms within 1.8 AÊ interatomic distance are connected.



these starting structures a minimum interatomic distance of

1.4 AÊ was enforced. Secondly, random atom distributions were

made by randomly placing 264 atoms in the unit cell, while

enforcing a minimum interatomic distance of 1.8 AÊ . All atoms

in the starting structures were given equal labels and carbon

scattering factors were assigned to all of them.

3.3. Refinement protocols

The re®nement protocols for optimization starting from the

scrambled models and random models are given in Figs. 5(a)

and 5(b). These optimization protocols include standard

procedures: overall B-factor optimization and weight deter-

mination for the X-ray restraint followed by maximum-

likelihood optimization by either energy minimization or

dynamics simulation. Table 1 contains the set of parameters

de®ning the conditional force ®eld; target values for packing

densities and interatomic distances were determined from

their distributions in several high-resolution structures in the

PDB. Up to nine layers of bonded conditions have been

de®ned, corresponding to linear elements up to, for example,

C�(i) to C�(i + 3). During the optimization, the width �r of the
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Table 1
Conditional force ®eld for alanines in a helical conformation.

(a) Parameters Nmin, Nmax and �N for atom types N, CA, C, O and CB, de®ning the atomic conditions for ®ve neighbour shells with different d + �d (see Fig. 3).

d + �d:
1.6 + 0.5 2.6 + 0.7 3.6 + 0.7 4.3 + 0.7 5.0 + 0.7

Atom type Nmin Nmax �N Nmin Nmax �N Nmin Nmax �N Nmin Nmax �N Nmin Nmax �N

N 1.0 2.0 4.0 6.5 9.5 8.0 10.0 16.0 8.0 10.0 25.0 8.0 10.0 32.0 8.0
CA 3.0 3.0 4.0 6.7 7.1 8.0 8.5 11.5 8.0 10.0 25.0 8.0 15.0 32.0 8.0
C 3.0 3.0 4.0 6.0 8.0 8.0 9.0 15.0 8.0 10.0 25.0 8.0 17.0 33.0 8.0
O 1.0 1.0 2.5 3.5 6.5 8.0 7.0 19.0 8.0 10.0 25.0 8.0 15.0 33.0 8.0
CB 1.0 1.0 2.5 3.0 4.0 8.0 5.0 9.5 8.0 6.5 19.5 8.0 9.0 29.0 8.0

(b) Parameters rmin, rmax, �r and �opt (see Figs. 2 and 4), describing the bonded conditions for all types of linear elements with L = 1±9.

Layer
Type
(L)

Subtype-A
(L ÿ 1)

Subtype-B
(L ÿ 1)

rmin

(AÊ )
rmax

(AÊ )
�r

(AÊ )
�opt

(�) Layer
Type
(L)

Subtype-A
(L ÿ 1)

Subtype-B
(L ÿ 1)

rmin

(AÊ )
rmax

(AÊ )
�r

(AÊ )
�opt

(�)

L = 1 NÐCA N CA 1.43 1.51 0.05 L = 6 NÐO NÐC CAÐO 5.63 5.97 0.30 158
CAÐC CA C 1.51 1.55 0.05 CAÐCA CAÐN CÐCA 5.27 5.69 0.30 78
CÐO C O 1.21 1.27 0.05 NÐN NÐC CAÐN 4.13 4.53 0.30 30
CÐN C N 1.31 1.35 0.05 CÐC CÐCA NÐC 4.37 4.75 0.30 22
CAÐCB CA CB 1.51 1.57 0.05 OÐCA OÐN CÐCA 4.11 4.69 0.30 ÿ50

L = 2 NÐC NÐCA CAÐC 2.41 2.53 0.08 CBÐO CBÐC CAÐO 6.11 6.51 0.30 ÿ86
CAÐO CAÐC CÐO 2.35 2.45 0.08 CBÐN CBÐC CAÐN 5.47 5.81 0.30 146
CAÐN CAÐC CÐN 2.39 2.49 0.08 CÐCB CÐCA NÐCB 4.99 5.53 0.30 ÿ94
CÐCA CÐN NÐCA 2.39 2.49 0.08 L = 7 CAÐC CAÐCA CÐC 5.25 5.77 0.35 90
OÐN OÐC² CÐN 2.21 2.31 0.08 CÐN CÐC NÐN 3.63 4.07 0.35 ÿ14
OÐO OÐC² CÐO 2.10 2.30 0.08 NÐCA NÐN CAÐCA 5.13 5.61 0.35 86
NÐCB NÐCA CAÐCB 2.39 2.55 0.08 OÐC OÐCA CÐC 3.83 4.39 0.35 ÿ30
CBÐC CBÐCA² CAÐC 2.43 2.61 0.08 CÐO CÐC NÐO 5.43 5.85 0.35 98

L = 3 NÐO NÐC CAÐO 3.43 3.61 0.15 138 CBÐCA CBÐN CAÐCA 6.65 7.05 0.35 ÿ166
NÐN NÐC CAÐN 2.71 2.93 0.15 ÿ42 CAÐCB CAÐCA CÐCB 5.57 6.27 0.35 ÿ18
CAÐCA CAÐN CÐCA 3.75 3.87 0.15 178 OÐCB OÐCA CÐCB 5.05 5.81 0.35 ÿ138
CÐC CÐCA NÐC 2.91 3.15 0.15 ÿ62 L = 8 NÐC NÐCA CAÐC 5.43 5.85 0.40 130
OÐCA OÐN CÐCA 2.69 2.85 0.15 ÿ2 OÐO OÐC CÐO 4.73 5.26 0.40 22
CBÐO CBÐC CAÐO 3.15 3.47 0.15 ÿ98 CAÐO CAÐC CÐO 6.37 6.91 0.40 130
CBÐN CBÐC CAÐN 3.01 3.37 0.15 82 CAÐN CAÐC CÐN 4.27 4.85 0.40 42
CÐCB CÐCA NÐCB 3.63 3.79 0.15 174 CÐCA CÐN NÐCA 4.33 4.87 0.40 22

L = 4 NÐCA NÐN CAÐCA 4.11 4.33 0.20 138 OÐN OÐC CÐN 2.99 3.65 0.40 ÿ70
CAÐC CAÐCA CÐC 4.29 4.53 0.20 122 CBÐCB CBÐCA CAÐCB 7.05 7.66 0.40 130
CÐO CÐC NÐO 3.69 4.05 0.20 62 NÐCB NÐCA CAÐCB 5.05 5.77 0.40 22
OÐC OÐCA CÐC 2.81 3.15 0.20 ÿ58 CBÐC CBÐCA CAÐC 6.71 7.15 0.40 ÿ122
CÐN CÐC NÐN 3.13 3.47 0.20 ÿ90 L = 9 NÐO NÐC CAÐO 6.65 7.09 0.45 166
CAÐCB CAÐCA CÐCB 4.77 4.99 0.20 ÿ10 CAÐCA CAÐN CÐCA 4.85 5.55 0.45 74
CBÐCA CBÐN CAÐCA 4.31 4.71 0.20 ÿ110 CÐC CÐCA NÐC 4.67 5.17 0.45 90
OÐCB OÐCA CÐCB 4.17 4.35 0.20 174 NÐN NÐC CAÐN 4.61 5.07 0.45 110

L = 5 NÐC NÐCA CAÐC 4.59 4.85 0.25 82 OÐCA OÐN CÐCA 3.47 4.09 0.45 ÿ38
CAÐO CAÐC CÐO 5.17 5.51 0.25 142 CBÐO CBÐC CAÐO 7.79 8.27 0.45 ÿ58
OÐO OÐC CÐO 3.17 3.71 0.25 14 CBÐN CBÐC CAÐN 5.71 6.31 0.45 ÿ114
CAÐN CAÐC CÐN 4.19 4.59 0.25 14 CÐCB CÐCA NÐCB 3.97 4.81 0.45 ÿ22
OÐN OÐC CÐN 3.21 3.71 0.25 ÿ114
CÐCA CÐN NÐCA 4.31 4.67 0.25 ÿ6
NÐCB NÐCA CAÐCB 4.81 5.19 0.25 ÿ46
CBÐC CBÐCA CAÐC 5.31 5.61 0.25 ÿ166
CBÐCB CBÐCA CAÐCB 5.13 5.67 0.25 66

² For types OÐC and CBÐCA the same parameters were used as for types CÐO and CAÐCB, respectively.
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conditional functions was adjusted according to the estimated

coordinate error ("r) derived from the estimated �A values:

�0r = �r + "rL
1/2. Atomic B factors were assigned using an

exponentially decreasing function depending on the number

of neighbours Nd
i within a shell d (+�d) of 4.3 (+0.7) AÊ :

Bi = 150exp(ÿ0.1Nd
i ), with a minimum value of 15 AÊ 2. The

time step in these calculations was 0.2 fs and during the

dynamics calculations the temperature was coupled to a

temperature bath (Tbath = 300 K).

Two aspects were tested for optimization starting from

scrambled models: (i) the effect of resolution by using data

truncated at 3.5, 3.0, 2.5 and 2.0 AÊ resolution and (ii) the effect

of the number of conditional layers L: three, six or nine. For

each test condition, three trials were performed using different

random starting velocities. A randomly selected 10% of the

re¯ections were excluded from re®nement and used for

calculation of Rfree (BruÈ nger, 1993) and cross-validated �A

estimates (Read, 1986; Pannu & Read, 1996).

For optimization starting from randomly placed atoms, all

X-ray data to 2.0 AÊ resolution were included. Compared with

the optimization of scrambled models, three modi®cations

were made: alternative protocols were de®ned for estimating

�A values and for handling the `test-set' re¯ections and to

allow faster sampling Tbath was set to 600 K. Standard �A

estimates are based on the correlation coef®cient between

observed and calculated normalized structure factors, Eobs and

Ecalc (Read, 1986). For random atom distributions and struc-

tures very far away from the correct answer, the binwise

correlation coef®cients on normalized structure factors yield

spuriously high values. We used a multiple-model approach to

obtain estimates of the phase error 'obs ÿ 'calc in the theo-

retical values for �A: �A = h|Eobs||Ecalc|cos('obs ÿ 'calc)i
(Srinivasan & Parthasaraty, 1976). Starting from the coordi-

nate set corresponding to Fcalc, four dynamics runs of 1000

steps each were performed at an elevated temperature of

900 K using different random starting velocities (yielding

structure factors sets Fi). From the resulting four models, we

compute the average structure factor Fave and ®gure of merit

mave (mave = |Fave|/h|Fi|i). By rewriting ('obs ÿ 'calc) =

('obs ÿ 'ave) + ('aveÿ 'calc) and assuming cos('obs ÿ 'ave) '
mave, we can estimate �A. For a range of test structures far

away from the known answer, these estimates had a reason-

able correlation to the theoretical values as calculated using

known phases 'obs of the test cases. The second feature

deviating from normal crystallographic re®nement protocols

was the handling of the test-set re¯ections. A conventional test

set comprising 7% of all re¯ections was used to calculate Rfree

and to estimate cross-validated �A values according to Pannu

& Read (1996) in the later stages of re®nement. Additionally,

another 7% of the re¯ections were taken out of the re®ne-

ment. After every 1000 steps, the selection of these 7% was

modi®ed. As a result, the re¯ections used in the crystal-

lographic target function changed every 1000 steps, resulting

in a `tacking' behaviour during re®nement and minimizing the

chance of stalled progress owing to local minima in the crys-

tallographic target function.

Calculations were performed on a Compaq XP1000 work-

station with 256 Mb of RAM memory and a single 667 MHz

processor. The CPU time needed was about 4 h for 100 000

steps of optimization.

Figure 9
Optimizations of a scrambled model with an initial coordinate error of
1.0 AÊ r.m.s.d. against diffraction data with different high-resolution limits.
The overall amplitude-weighted phase errors are shown for the initial
model (solid lines) and the re®ned structures (crosses) using (a) six and
(b) nine layers of conditions, where each run was performed three times
starting from different random velocities.

Figure 10
Scatter plot of the amplitude-weighted phase error vs. the free R factor
for the 15 ®nal models that were obtained starting from random atom
distributions.



4. Results

4.1. Refinement of scrambled models

Six scrambled models with coordinate errors of 1.0, 1.2, 1.4,

1.6, 1.8 and 2.0 AÊ root-mean-square deviation (r.m.s.d.) were

generated. The dependence of the method on the number of

conditional layers was tested performing a series of re®ne-

ments using three, six or nine layers. The resulting amplitude-

weighted phase errors are shown in Fig. 6. Three layers of

conditions are not enough to give signi®cant phase improve-

ment. Using six layers, scrambled models with r.m.s.d.s up to

1.4 AÊ could be improved signi®cantly. Adding another three

layers of conditions led to a small increase in the success rate.

Fig. 7 shows the phase improvement for the re®ned 1.4 AÊ

r.m.s.d. structure with the lowest free R factor using three, six

or nine layers of conditions. Fig. 8 shows an initial model with

a coordinate error of 1.4 AÊ r.m.s.d and the re®ned structure

with the lowest free R factor using nine layers of conditions.

This structure is representative for all successful runs: the four

helices are clearly visible, although some are not completed,

contain breaks in the main chain or the NÐC direction is

reversed. For structures with a coordinate error larger than

1.4 AÊ r.m.s.d., re®nement did not yield improvement of the

phases. This coincides with the observation that for models

with large errors the SIGMAA procedure (Pannu & Read,

1996) gave spurious estimates for the �A values (results not

shown).

The dependence on the high-resolution limit of the

diffraction data was tested by re®ning the 1.0 AÊ r.m.s.d. model

using data truncated at various resolution limits.

Calculations were performed using six or nine

layers of conditions. The resulting phase improve-

ments are shown in Fig. 9. All runs using data to a

resolution of 3.0 AÊ were successful. When using

only 3.5 AÊ data all three runs using six layers of

conditions failed, while using nine layers of condi-

tions resulted in a success rate of two out of three.

4.2. Refinement of random atom distributions

Sixteen different random atom distributions were

re®ned according to the protocol in Fig. 5(b). One

run was abandoned because standard �A estimates

could not be obtained by the SIGMAA procedure

after the initial 20 000 steps. Of the remaining 15

models, six yielded a ®nal amplitude-weighted

phase error of smaller than 50� for data to 2.0 AÊ

resolution. This corresponds to a success rate of one

out of three. For these successful runs a condensa-

tion into four rod-like structures was observed

during the initial stages of the re®nement process,

thereby establishing a choice of origin for the

triclinic cell. Subsequent dynamics optimization

lead to the formation of helical fragments that were

expanded into near-complete �-helices. Fig. 10

shows a clear correlation between the phase errors

and the overall free R factor obtained for the ®nal

models. The structure with the lowest free R factor

is shown in Fig. 111. This structure clearly shows the four �-

helices and resembles the results obtained from the re®ne-

ment of the scrambled models. The errors in the model include

chain breaks, incomplete helices and chain reversals.

5. Discussion

We introduced a new method for optimization of protein

structures that overcomes the necessity of a ®xed topology for

de®ning geometrical restraints. This N-particle approach

offers a `restrained topology', where weighted gradients over

all possible assignments are applied to loose atoms. We tested

this method using calculated data and a very simple test case

consisting of four polyalanine helices with 244 non-H atoms in

total. Optimizations starting from scrambled models show that

the method works successfully with diffraction data of at least

3.0 to 3.5 AÊ resolution and with six or nine layers of condi-

tions, corresponding to linear structural elements of the length

of two and three peptide planes, respectively. Moreover, we

have shown that our test structure can be optimized success-

fully starting from randomly distributed atoms when using

2.0 AÊ resolution diffraction data. Important for successful

optimization of random starting models was estimation of

reasonable �A values for very bad models using a multiple-
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Figure 11
Stereoviews of (a) a successfully re®ned structure starting from a random atom
distribution (in black) superimposed on the target structure (in grey) and (b) the same
structure in ball-and-stick representation with automatic assignment of atom types
based on the scores of joint conditions (white, unassigned; light grey, carbon; dark
grey, nitrogen; black, oxygen). Atoms within 1.8 AÊ interatomic distance are
connected.

1 A movie showing the formation of the four helices starting from a random
atom distribution is available from the IUCr electronic archive (Reference:
jn0096) and can be viewed in the online version of this paper. Details on how
to access these data are available at the back of the journal.
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model procedure. For trials with different random starts a

success rate of one out of three was observed. The free R

factor readily distinguished correct solutions from false ones.

To our knowledge, we have presented the ®rst method that in

principle allows an ab initio optimization of atomic models

under conditions relevant for protein crystallography (i.e. at

medium resolution).

However, in our experiments we used calculated data

without a bulk-solvent contribution and a small and very

simple test case. Calculations against real protein diffraction

data will require a model for the bulk solvent and the condi-

tional force ®eld will have to be expanded to target functions

that also include the structurally more variable �-sheets, loop

regions and side chains. In analogy with the hybrid model of

the ARP/wARP program, constrained assignments of recog-

nisable structural elements may be included in the optimiza-

tion process in order to improve the rate of convergence, for

example by correcting errors such as chain breaks and rever-

sals. The ef®ciency of our approach for larger and more

complex systems will have to be demonstrated. Owing to the

possibility of using prior information extensively, conditional

optimization may offer a powerful alternative for phase

improvement, both when initial phase estimates are available

and in ab initio structure determination.
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