Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Duncan M. Tooke, ${ }^{\text {a* }}$ Jos Wilting, ${ }^{\text {b }}$ Dieter Vogt ${ }^{\text {b }}$ and Anthony L. Spek ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Bijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and ${ }^{\mathbf{b}}$ Schuit Institute of Catalysis, PO Box 513, 5600 MB Eindhoven,
The Netherlands

Correspondence e-mail: d.m.tooke@chem.uu.nl

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.098$
Data-to-parameter ratio $=18.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(Diphenylphosphino)phenyl 2-(diphenylphosphinoyl)phenyl ether

The title compound, $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{P}_{2}$, features weak inter- and intramolecular hydrogen bonds linking molecules into infinite chains.

Received 29 June 2005 Accepted 30 June 2005 Online 6 July 2005

Comment

The title compound, (I), was inadvertently obtained during an attempt to synthesize a nickel-phosphine complex.

(I)

The structure features a weak hydrogen bond between aromatic atom H 6 and the phosphine oxide O atom, which a search of the Cambridge Structural Database (Version 5.26; Allen, 2002) shows to be a common feature in phenyl-substituted phosphine oxides. An additional weak (Steiner, 1996) bifurcated intermolecular hydrogen bond is also present between O 2 and H 27 and H 28 , which joins the molecules into an infinite chain along [110].

View of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Experimental

A tetrahydrofuran solution of 2 equivalents of bis[2-(diphenylphosphino)phenyl] ether and bis(1,5-cyclooctadiene)nickel(0) was layered with n-pentane and placed in a freezer, resulting in a crop of off-white crystals after $5 \mathrm{~d} .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 22.8(s)$, -17.5 (s).

Crystal data

$\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{P}_{2}$
$M_{r}=554.52$
Triclinic, $P \overline{1}$
$a=9.9316$ (7) \AA 。
$b=10.2786(5) \AA$
$c=14.5778(10) \AA$
$\alpha=75.785(4)^{\circ}$
$\beta=83.778(6)^{\circ}$
$\gamma=85.529(6)^{\circ}$
$V=1432.05(16) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.286 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 152 reflections
$\theta=4.3-21.9^{\circ}$
$\mu=0.18 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Block, colourless
$0.3 \times 0.3 \times 0.15 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer ω and φ scans
Absorption correction: none
26296 measured reflections
6527 independent reflections
5195 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.098$
$S=1.04$
6527 reflections
361 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6-H6 $\cdots \mathrm{O} 2$	0.95	2.56	$2.975(2)$	107
C27-H27 O^{i}	0.95	2.59	$3.206(2)$	123
C28-H28 $\cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.58	$3.202(2)$	123

[^0]

Figure 2
$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (dashed lines) around the phosphine oxide. [Symmetry code: (A) $1+x, 1-y, z$.

All H atoms were placed in geometrically idealized positions ($\mathrm{C}-$ $\mathrm{H}=0.95 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for all other H atoms.

Data collection: COLLECT (Hooft, 1998); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

The authors thank the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CWNWO) for their support.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Steiner, Th. (1996). Crystallogr. Rev. 6, 1-57.

[^0]: Symmetry code: (i) $x-1, y+1, z$.

