Dichloro(di-2-pyridylamine)zinc(II): a redetermination at 110 K

Martin Lutz, Anthony L. Spek, Pieter C. A. Bruijnincx, Robertus J. M. Klein Gebbink and Gerard van Koten
Dichloro(di-2-pyridylamine)zinc(II): a redetermination at 110 K

The title compound, [ZnCl₂(C₁₀H₉N₃)], has been investigated at 110 K. In contrast with the previously published room-temperature structure [Ho et al. (1999). J. Chem. Soc. Dalton Trans. pp. 1581-1586], the amine N atom is found to have a symmetrical planar environment. The two independent Zn—Cl distances are significantly different, but the difference of 0.0414 (3) Å is within the range found in other tetrahedral ZnCl₂ complexes.

Comment
The crystal structure of dichloro[bis(2-pyridyl)amine]zinc(II), (I), has been published by Ho et al. (1999) with a distorted non-planar geometry at the amine N atom, expressed by C—N—H angles of 106 (2) and 117 (2)° and a rather long N—H distance of 1.12 (4) Å. In order to determine more precisely the environment of the amine N atom, we re-determined the structure at low temperature. All H atoms could be located in the difference Fourier map and were refined freely with isotropic displacement parameters. The amine N atom has a symmetrical planar geometry, with C—N—H angles of 114.1 (12) and 112.2 (11)° and an angle sum of 360.0°, and an N—H distance of 0.827 (17) Å (Fig. 1).

The molecule of (I) has an approximate mirror symmetry with an r.m.s. deviation of 0.064 Å (Pilati & Forni, 1998). The N—H group, the Zn atom and the Cl ligands are located on the local mirror plane. Thus, the ligand is not completely flat but shows an interplanar angle of 5.96 (5)° between the two pyridine rings. The central six-membered chelate ring, containing the Zn atom, three N atoms and atoms C₅ and C₆, is puckered. A conformational analysis (Cremer & Pople, 1975) shows that this ring has an envelope conformation (Evans & Boeyens, 1989), with the Zn atom 0.1436 (3) Å...
of 110 K for (I) and 213 K for (II), but a real difference might be an effect of the different measurement temperatures.

The crystal structure of (I) is isostructural with the corresponding Co
3
 complex, (II) (Cotton et al., 1998). The Zn—N distances of 2.0202 (8) and 2.0280 (8) Å in (I) are very similar to the Co—N distances of 1.998 (3) and 2.008 (3) Å in (II). Correspondingly, the C—N—C angles of the amine group, 133.67 (8)° in (I) and 133.7 (3)° in (II), are the same. This amine angle is larger than the angle at the keto group of B
1
[C1/C1/C1/C1] and ring B
10
[C1/C1/C1] in (II).

The M—Cl distances in (I) differ from each other by 0.0414 (3) Å. Such a difference is not unusual in tetrahedral zinc complexes. In (II), this difference is only 0.022 (1) Å. This might be an effect of the different measurement temperatures of 110 K for (I) and 213 K for (II), but a real difference between Zn and Co cannot be excluded. In both cases, the Cl atom of the longer bond is the acceptor of hydrogen bonds.

A centrosymmetric dimer is formed via intermolecular hydrogen bonding, with the amine group as donor and atom Cl2 as acceptor. Within this dimer, there are additional π–π interactions between the pyridine rings, with a distance of approximately 3.45 Å between ring A (N1/Cl—C5) and ring B
11
[C1/C1/C1/C1] (Symmetry code: (i) 1 — x, 1 — y, 1 — z; (ii) x + 1, y, z; (iii) — x, 1 — y, 1 — z; (iv) 2 — x, 1 — y, 1 — z; (v) x + 1, y, z).

Experimental

The synthesis and crystallization of (I) were performed according to the literature method of Ho et al. (1999).

Crystal data

\[
\begin{align*}
\text{Z} & = 2 \\
D_x & = 1.787 \text{ Mg m}^{-3} \\
\text{Mo } K\alpha \text{ radiation} \\
\text{Cell parameters from 16716 reflections} \\
\theta & = 2.2–35.0^\circ \\
\mu & = 2.59 \text{ mm}^{-1} \\
T & = 110 (2) \text{ K} \\
\text{Plate, colourless} \\
V & = 571.31 (2) \text{ Å}^3 \\
\end{align*}
\]

Data collection

Nonius KappaCCD diffractometer 4516 reflections with \(I > 2\sigma(I) \)

Absorption correction: multi-scan \(R_{	ext{int}} = 0.027 \)

\(\theta_{	ext{max}} = 35.0^\circ \)

\(h = -11 \rightarrow 11 \)

\(k = -13 \rightarrow 13 \)

26436 measured reflections

4993 independent reflections

Figure 1

Displacement ellipsoid plot of (I). Ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2

PEANUT plot (Hummel et al., 1990), showing the difference between the measured displacement parameters and the parameters obtained by a rigid-body refinement using the program THMA11 (Schomaker & Trueblood, 1998). A scale factor of 6.15 was used for the root-mean-square surfaces. Blue lines indicate positive differences and purple lines negative ones. The largest difference is found for atom N2 (see text).

Figure 3

Formation of dimers by N—H···Cl hydrogen bonding. π–π stacking within the dimers and between the dimers forms a one-dimensional rod in the crystallographic a direction. [Symmetry codes: (i) 1 — x, 1 — y, 1 — z; (ii) x + 1, y, z; (iii) — x, 1 — y, 1 — z; (iv) 2 — x, 1 — y, 1 — z; (v) x + 1, y, z;]
Refinement

Refinement on \(F^2 \)

\[
R[F^2 > 2\sigma(F^2)] = 0.020
\]

\[
wR^2(F^2) = 0.047
\]

S = 1.06

4993 reflections

181 parameters

All H-atom parameters refined

\[
w = 1/\sigma^2(F_o^2) + 0.2075P + 0.2075P
\]

where

\[
P = (F_o^2 + 2F_c^2)/3
\]

\(\Delta \rho_{\text{max}} = 0.56 \) e Å\(^{-3} \)

\(\Delta \rho_{\text{min}} = -0.39 \) e Å\(^{-3} \)

Table 1

Selected geometric parameters (Å, °).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å) (Eps)</th>
<th>Distance (Å) (C27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn1–N1</td>
<td>2.0202 (8)</td>
<td>2.2502 (3)</td>
</tr>
<tr>
<td>Zn1–N3</td>
<td>2.0280 (8)</td>
<td>1.3862 (11)</td>
</tr>
<tr>
<td>Zn1–Cl1</td>
<td>2.0882 (2)</td>
<td>2.1131 (2)</td>
</tr>
<tr>
<td>Zn1–Cl2</td>
<td>2.2088 (2)</td>
<td>1.3826 (11)</td>
</tr>
<tr>
<td>N1–N3</td>
<td>93.19 (3)</td>
<td>113.77 (2)</td>
</tr>
<tr>
<td>N1–Cl1</td>
<td>116.57 (2)</td>
<td>112.13 (2)</td>
</tr>
<tr>
<td>N1–Cl2</td>
<td>107.20 (2)</td>
<td>112.2 (11)</td>
</tr>
</tbody>
</table>

Table 2

Hydrogen-bond geometry (Å, °).

<table>
<thead>
<tr>
<th>D—H—A</th>
<th>D—H</th>
<th>H—A</th>
<th>D—A</th>
<th>D—H—A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2—H2N—Cl2</td>
<td>0.83 (2)</td>
<td>2.45 (2)</td>
<td>3.2563 (8)</td>
<td>166 (2)</td>
</tr>
<tr>
<td>C9—H9—Cl2</td>
<td>0.95 (2)</td>
<td>2.81 (2)</td>
<td>3.6803 (10)</td>
<td>154 (1)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) \(-x+1, -y+1, -z+1\); (ii) \(-x+1, -y+1, -z+2\).

The X-ray intensities were obtained with two different exposure times and rotation angles of \(\frac{1}{14} \). 363 \(\psi \) and 770 \(\omega \) scans were measured with an exposure time of 40 s per frame, and 364 \(\psi \) scans with an exposure time of 8 s per frame. All benzene H atoms were refined freely with isotropic displacement parameters, in order to demonstrate that the outcome of the free refinement of H2N is reliable.

Data collection: \textit{COLLECT} (Nonius, 1999); cell refinement: \textit{PEAKREF} (Schreurs, 2005); data reduction: \textit{EVALCCD} (Duisenberg et al., 2003); method used to solve structure: coordinates taken from literature (Ho et al., 1999); program(s) used to refine structure: \textit{SHELXL97} (Sheldrick, 1997); molecular graphics: \textit{PLATON} (Spek, 2003); software used to prepare material for publication: \textit{PLATON}.

This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW–NWO).

References

