Structure Reports

Online
ISSN 1600-5368

Huub Kooijman, ${ }^{\text {a * }}$ Mark Leemhuis, ${ }^{\text {b }}$ Cornelus F. van Nostrum, ${ }^{\text {b }}$ Wim E. Hennink ${ }^{\text {b }}$ and Anthony L. Spek ${ }^{\text {a }}$

${ }^{\text {a }}$ Bijvoet Centre for Biomolecular Research, Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and ${ }^{\mathbf{b}}$ Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht,
The Netherlands

Correspondence e-mail:
h.kooijman@chem.uu.nl

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.043$
$w R$ factor $=0.102$
Data-to-parameter ratio $=7.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(3S)-3-Benzyloxymethyl-1,4-dioxane-2,5-dione

The lactide ring in the title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$, adopts a screw-boat conformation. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions link the molecules into a chain in the [100] direction.

Comment

The structure of the title compound, (I), was determined in the course of our investigations towards a better understanding of the regioselectivity observed in the ring-opening polymerization of various substituted (3S)-3-benzyloxymethyl-1,4-dioxane-2,5-dione derivatives (Leemhuis et al., 2005). Earlier, we reported the crystal structures of the $6(R)$-methyl (Kooijman et al., 2005a) and the $6(S)$-methyl derivatives (Kooijman et al., 2005b). The molecular structure of (I) is displayed in Fig. 1 and selected geometric parameters are given in Table 1.

(I)

The lactide ring has taken a somewhat deformed screw-boat conformation. The asymmetry parameter (Duax \& Norton, 1975) $\Delta C_{2}(\mathrm{C} 2-\mathrm{O} 3)=6.4(5)^{\circ}$; all other asymmetry parameters have values of 18° or higher. The Cremer \& Pople puckering parameters (Cremer \& Pople, 1975) are $\theta=$

Figure 1

Atomic displacement plot (Spek, 2003) of the title compound, showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Received 22 September 2005 Accepted 23 September 2005 Online 30 September 2005
$77.1(6)^{\circ}$ and $\varphi=320.3(6)^{\circ}$; the ideal values for the observed screw-boat conformation are $\theta=67.5^{\circ}$ and $\varphi=330^{\circ}$. The benzyloxymethyl substituent of the lactide ring occupies the axial position, as illustrated by the angle between the leastsquares plane through the non-planar lactide ring and the C5-C6 bond, which amounts to $77.9(3)^{\circ}$. In the $6(R)$-methyl derivative, the benzyloxymethyl group also occupies the axial position [plane-bond angle $=67.20(13)^{\circ}$]. The $6(S)$-methyl derivative, however, has the benzyloxymethyl group in the equatorial position [plane-bond angle is $13.13(13)^{\circ}$], most likely due to steric hindrance between the substituents of the lactide ring. The link between the two ring systems is not in an all-trans conformation, the torsion angles $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 4$ and $\mathrm{O} 5-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ having the -gauche conformation.

The packing displays short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts, geometric details of which are given in Table 2. These contacts link the molecules into an infinite chain in the [100] direction (see Fig. 2).

Experimental

The synthesis of the title compound is described elsewhere (Leemhuis et al., 2003). Crystals were grown from a solution in methyl tertbutyl ether.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5} \\
& M_{r}=236.22 \\
& \mathrm{Monoclinic}, P_{1} \\
& a=6.925(4) \AA \\
& b=7.025(4) \AA \\
& c=11.733(8) \AA \\
& \beta=103.44(3))^{\circ} \\
& V=555.2(6) \AA^{3} \\
& Z=2
\end{aligned}
$$

$D_{x}=1.413 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 219 reflections
$\theta=2.0-25.0^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, colourless
$0.15 \times 0.05 \times 0.05 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ scans and ω scans with κ offsets
Absorption correction: none
12280 measured reflections
1098 independent reflections

899 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.087$
$\theta_{\text {max }}=25.3^{\circ}$
$h=-8 \rightarrow 8$
$k=-8 \rightarrow 8$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0492 P)^{2}\right. \\
+0.1 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.17 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 2-\mathrm{C} 1$	$1.339(4)$	$\mathrm{O} 3-\mathrm{C} 2$	$1.437(5)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.446(4)$	$\mathrm{O} 3-\mathrm{C} 4$	$1.333(4)$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 5$	$118.3(3)$	$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 4$	$120.7(3)$
$\mathrm{C} 7-\mathrm{O} 5-\mathrm{C} 6-\mathrm{C} 5$	$-179.6(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 5$	$-61.9(4)$
$\mathrm{C} 6-\mathrm{O} 5-\mathrm{C} 7-\mathrm{C} 8$	$158.0(3)$	$\mathrm{O} 5-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-59.7(4)$

Figure 2
Short contacts $\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 1(x-1, y, z)$ link the molecules into an infinite chain in the [100] direction.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6-H6AO1 ${ }^{\mathrm{i}}$	0.99	2.58	$3.274(5)$	127
Symmetry code: $(\mathrm{i}) x-1, y, z$.				

In the absence of significant anomalous scatterers, Friedel's law still holds. Friedel pairs were therefore averaged. The absolute configuration of C5 was chosen in accordance with the enenatiopure starting material. H atoms were introduced in calculated positions, with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$, and refined as riding on their carrier atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported in part (ALS and ML) by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO) with financial aid from the Netherlands Technology Foundation. (CW/ STW 790.35.622).

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure, Vol. 1. New York: IFI/Plenum.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Kooijman, H., Leemhuis, M., van Nostrum, C. F., Hennink, W. E. \& Spek, A. L. (2005a). Acta Cryst. E61, o898-o900.
Kooijman, H., Leemhuis, M., van Nostrum, C. F., Hennink, W. E. \& Spek, A. L. (2005b). Acta Cryst. E61, o901-o903.
Leemhuis, M., van Nostrum, C. F. \& Hennink, W. E. (2005). Macromolecules. Submitted.
Leemhuis, M., van Steenis, J. H., van Uxem, M. J., van Nostrum, C. F. \& Hennink, W. E. (2003). Eur. J. Org. Chem. pp. 3344-3349.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

