electronic reprint

Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
Editors: W. Clegg and D. G. Watson

3,5-Di-tert-butyl-2-hydroxybenzaldehyde

Duncan M. Tooke and Anthony L. Spek

[^0]Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Duncan M. Tooke* and Anthony L. Spek

Bijvoet Center for Biomolecular Research, Department of Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Correspondence e-mail: d.m.tooke@chem.uu.nl

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in main residue
R factor $=0.053$
$w R$ factor $=0.146$
Data-to-parameter ratio $=16.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

3,5-Di-tert-butyl-2-hydroxybenzaldehyde

The title compound, $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$, crystallizes in the monoclinic space group $P 2_{1} / c$, with two molecules in the asymmetric unit related by a non-crystallographic inversion centre. The $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is exclusively intramolecular.

Comment

During the course of research into metal complexes with extended chelating ligands, the structure of the title compound, (I), was determined (Fig. 1).

(I)

The asymmetric unit contains two crystallographically independent molecules, one of which includes a disordered tert-butyl group, with relative occupancies of 69.6 (3) and $30.4(3) \%$ for the two components. Small $\left(10 \AA^{3}\right)$ voids are found close to the disordered moieties.

A local pseudo-inversion centre is located between the two crystallographically independent molecules, and is broken by the disorder of the tert-butyl group involving atom C23. It is, in fact, the major component of the disorder that breaks the symmetry, and not the minor (Fig. 2).

The only strong hydrogen bonds are intramolecular, between H 2 and O 1 , and between H 4 and O 3 , and the molecules pack in layers parallel to the (101) plane in the crystal structure (Fig. 3).

Figure 1
The asymmetric unit of the title compound, with the atom-numbering scheme. Both disorder components are included. Dashed bonds represent hydrogen bonds. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Received 3 March 2004
Accepted 5 April 2004
Online 17 April 2004

Experimental

The title compound, recovered unchanged from a reaction mixture in which it was one of the intended reagents, was recrystallized from hot methanol, giving large good-quality single crystals.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$
$D_{x}=1.115 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=234.33$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=11.627$ (1) A
$b=10.1214(7) \AA$
$c=25.461(2) \AA$
$\beta=111.326(3)^{\circ}$
$V=2791.1$ (4) \AA^{3}
$Z=8$
Mo $K \alpha$ radiation
Cell parameters from 56
reflections
$\theta=4.0-18.3^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, colourless
$0.30 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection
Nonius KappaCCD diffractometer

$$
\begin{aligned}
& R_{\mathrm{int}}=0.063 \\
& \theta_{\max }=26.5^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=-12 \rightarrow 12 \\
& l=-31 \rightarrow 31
\end{aligned}
$$

Absorption correction: none
28855 measured reflections
5782 independent reflections
4178 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.146$
$S=1.04$
5782 reflections
358 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0694 P)^{2}\right. \\
& \quad+1.0702 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{O} 3-\mathrm{C} 16$	$1.227(2)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.226(2)$
$\mathrm{O} 4-\mathrm{C} 22$	$1.3560(18)$	$\mathrm{O} 2-\mathrm{C} 7$	$1.3584(18)$
$\mathrm{O} 3-\mathrm{C} 16-\mathrm{C} 17$	$125.00(16)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$125.03(16)$
$\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 21$	$119.60(14)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 6$	$119.89(14)$
$\mathrm{O} 4-\mathrm{C} 22-\mathrm{C} 17$	$120.03(14)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 2$	$120.05(14)$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 \cdots O1	$0.88(2)$	$1.80(2)$	$2.6122(18)$	$151.5(19)$
O4-H4 \cdots O3	$0.88(3)$	$1.79(2)$	$2.6075(18)$	$153.7(19)$

Atoms H 2 and H 4 were refined freely with individual isotropic displacement parameters. All remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms, and $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for all other H atoms. The tert-butyl group containing atom C23 was rotationally disordered over two positions. The final occupancies of the two sites were 69.6 (3) and $30.4(3) \%$ for the major and minor components, respectively.

Figure 2
Plot of the fit between the two molecules related by a pseudo-inversion centre (one molecule has been inverted). It is the major component that breaks the symmetry, and not the minor.

Figure 3
Projection of the structure down the b axis, demonstrating the packing of the two crystallographically independent molecules in layers parallel to the (101) plane.

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVAL14 (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported in part (ALS) by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO). The crystals were prepared and kindly donated by Dr K. Ramu, University of Leiden, The Netherlands.

References

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003), J. Appl. Cryst. 36, 220-229.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: Copyright © International Union of Crystallography
 Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

