Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson

μ -Oxo-bis{chloro[*N*-(2-methoxyethyl)-*N*,*N*-bis(pyridin-2-ylmethyl)amine- κ^4 -*N*,*N'*,*N''*,*O*]iron(III)} bis(trifluoromethanesulfonate) acetonitrile disolvate

Huub Kooijman, Martin van Son, Stefania Tanase, Elisabeth Bouwman, Jan Reedijk and Anthony L. Spek

Copyright $\ensuremath{\mathbb{C}}$ International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

Acta Cryst. (2005). E61, m1042-m1044

Kooijman et al. • [Fe₂(C₁₅H₁₉ClN₃O)₂O](CF₃O₃S)₂•2C₂H₃N

metal-organic papers

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368

Huub Kooijman,^a* Martin van Son,^b Stefania Tanase,^b Elisabeth Bouwman,^b Jan Reedijk^b and Anthony L. Spek^a

^aBijvoet Centre for Biomolecular Research, Department of Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and ^bLeiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands

Correspondence e-mail: h.kooijman@chem.uu.nl

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.009 Å Disorder in main residue R factor = 0.064 wR factor = 0.184 Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

μ -Oxo-bis{chloro[N-(2-methoxyethyl)-N,N-bis(pyridin-2-ylmethyl)amine- κ^4 -N,N',N'',O]iron(III)} bis(trifluoromethanesulfonate) acetonitrile disolvate

The main molecule of the title compound, $[Fe_2(C_{15}H_{19}Cl-N_3O)_2O](CF_3O_3S)_2 \cdot 2C_2H_3N$, is located on a crystallographic inversion centre and displays disorder in the coordinated methoxyethyl group. The counter-ion and the cocrystallized solvent molecule are also disordered over multiple positions. The five-membered chelate rings involving the pyridine N atoms are in an envelope conformation. The chelate ring involving the ether O atom is in a half-chair conformation in both disorder components.

Received 26 April 2005 Accepted 28 April 2005 Online 7 May 2005

Comment

 μ -Oxodiiron(III) complexes are known to catalyse the oxidation of a range of substrates, including alkanes and olefins (Costas et al., 2000; Tanase et al., 2004). The title compound, (I), was obtained by acid-base self-assembly synthesis during attempts to prepare chloride-free μ -oxodiiron(III) complexes with the ligand N-(2-methoxyethyl)-N,Nbis(pyridin-2-ylmethyl)amine (abbreviated as mebpa). Previously, the crystal structures of the dinuclear iron complex with perchlorate counter-ions were reported by Nishida et al. (1995), Ito et al. (1997) and Tanase et al. (2004). No atomic coordinates are available for the first two structures. In this paper, we report the crystal structure of an acetonitrile solvate of the dinuclear iron complex, with trifluoromethanesulfonate counter-ions. The ligand mebpa is known to be very stable as its hydrochloride (mebpa·HCl). From this study, it is clear that the addition of weak bases (such as Me₄NOH or Et₄NOH) does not prevent the formation of the strong Fe^{III}-Cl bond.

The structure of the $[Fe(mebpa)Cl]_2O$ complex in (I) is shown in Fig. 1 and selected bond lengths and angles are listed in Table 1. The bridging O atom of the complex is located on a crystallographic inversion centre. The Fe^{III} ion is in an octahedral coordination environment, which is somewhat

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

View of the main molecule in (I), showing 50% probability displacement ellipsoids (H atoms have been omitted for clarity). Disorder components with an occupation factor of less than 0.5 are drawn with dashed bonds. [Symmetry code: (i) 1 - x, -y, 1 - z.]

deformed by the small bite angles of the mebpa ligand $[75.08 (14)-77.47 (16)^{\circ}]$. These values are similar to the equivalent range found for the perchlorate structure [75.49 (11)–77.65 (11)°] by Tanase et al. (2004). Both disorder components of the five-membered chelate ring (see Fig. 1) involving the ether O atom are in a half-chair conformation, as is indicated by the asymmetry parameters (Duax & Norton, 1975) $\Delta C_2(C30-C31A) = 4.5 (3)^\circ$ and $\Delta C_2(O2-C31B) =$ 5.2 $(15)^{\circ}$ for the major and minor components, respectively. The five-membered chelate rings involving the pyridine N atoms are in an envelope conformation, with N3 protruding from the plane of the other atoms, as is indicated by the asymmetry parameters $\Delta C_{\rm s}(\rm N3) = 6.5$ (4) and 11.4 (5)° for the chelate rings involving N1 and N2, respectively. The chelate rings of the iron complex in the perchlorate structure (Tanase et al., 2004) have the same conformation as the corresponding rings in the major component of the title compound.

Experimental

The ligand mebpa HCl was prepared using the procedure reported by Wu et al. (2003). Compound (I) was obtained as dark-orange crystals by the slow diffusion of hexane into a tetrahydrofuran solution containing 0.1 mmol Fe(CF₃SO₃)₂, 0.1 mmol mebpa·HCl and 0.1 mmol Bu₄NOH. The resulting crystals were collected by filtration, washed with hexane and dried in a vacuum (yield: 65%). Elemental analysis calculated: C 39.54, H 4.06, N 10.25%; found: C 39.27, H 3.93, N 10.53%. IR (cm⁻¹): v 3566 (w), 2925 (m), 2823 (w), 1608 (s), 1574 (*m*), 1482 (*m*), 1445 (*s*), 1252 (*s*), 1223 (*s*), 1142 (*s*), 1106 (*w*), 1076 (*w*), 1027 (s), 860 (s), 807 (m), 760 (m), 726 (w), 668 (w), 635 (s), 572 (m), 516 (m), 481 (w). UV-vis/NIR, λ_{max} (nm): 294, 355, 498 (m).

View of the disordered counter-ion and solvent molecules in (I). Disorder components with an occupation factor of less than 0.5 are drawn with dashed bonds.

Z = 1

 $D_r = 1.582 \text{ Mg m}^{-3}$

Cell parameters from 244

Mo $K\alpha$ radiation

reflections

 $\theta = 2.0-25.0^{\circ}$

T = 150 K

 $R_{int} = 0.167$

 $\theta_{\rm max} = 27.0^{\circ}$

 $h = -11 \rightarrow 11$

 $k = -14 \rightarrow 14$

 $l = -15 \rightarrow 15$

 $\mu = 0.92 \text{ mm}^{-1}$

Block, dark orange

 $0.20\,\times\,0.10\,\times\,0.10$ mm

3784 reflections with $I > 2\sigma(I)$

Crystal data

[Fe₂(C₁₅H₁₉ClN₃O)₂O](CF₃O₃S)₂--2C₂H₃N $M_r = 1093.53$ Triclinic, P1 a = 8.6773 (10) Åb = 11.585 (2) Å c = 12.068 (2) Å $\alpha = 77.137 \ (14)^{\circ}$ $\beta = 79.072 \ (14)^{\circ}$ $= 79.279 (14)^{\circ}$ V = 1148.1 (3) Å³

Data collection

Nonius KappaCCD area-detector diffractometer φ scans and ω scans with κ offset Absorption correction: none 36 193 measured reflections 5000 independent reflections

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0791P)^2]$
+ 1.96 <i>P</i>]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 1.38 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.88 \text{ e } \text{\AA}^{-3}$

Table 1		
Selected geometric parameters	(Å,	°).

Fe1-Cl1	2.2751 (13)	Fe1-N1	2.132 (4)
Fe1-O1	1.7801 (7)	Fe1-N2	2.135 (5)
Fe1-O2	2.305 (4)	Fe1-N3	2.183 (4)
Cl1-Fe1-O1	102.53 (4)	O1-Fe1-N3	95.09 (10)
Cl1-Fe1-O2	87.50 (11)	O2-Fe1-N1	89.33 (13)
Cl1-Fe1-N1	100.75 (10)	O2-Fe1-N2	80.67 (16)
Cl1-Fe1-N2	102.96 (13)	O2-Fe1-N3	75.08 (14)
Cl1-Fe1-N3	162.33 (10)	N1-Fe1-N2	153.76 (16)
O1-Fe1-O2	168.56 (11)	N1-Fe1-N3	76.52 (14)
O1-Fe1-N1	94.11 (10)	N2-Fe1-N3	77.47 (16)
O1-Fe1-N2	91.59 (13)		. ,

The 2-methoxyethyl group of the mebpa ligand displayed conformational disorder, which could be described with a two-site model for atom C31. The site-occupancy ratio (sum constrained to unity) for

metal-organic papers

C31 refined to 0.796 (10):0.204 (10). A model with three disorder components was introduced to describe the disorder in the trifluoromethanesulfonate counter-ion (Fig. 2). Mild restraints were applied to ensure equal values for chemically equivalent bond lengths and angles. The occupancies of the components refined to 0.406 (3):0.317 (3):0.277 (2) (sum restrained to unity). The disorder in the acetonitrile solvent molecule was described with a two-site disorder model, with occupancy ratio 0.668 (12):0.332 (12). The methyl groups of the mebpa ligand and the acetonitrile solvent molecule were refined as rigid groups, allowing for rotation around the O-C and C-C bonds, respectively. All other H atoms were introduced at calculated positions (C-H = 0.95-0.99 Å) and refined as riding on their carrier atoms. The non-H atoms of the solvent molecule and the minor disorder component of the iron complex were refined with isotropic displacement parameters. The disordered counter-ion was refined with common isotropic displacement parameters for each element type. All other non-H atoms were refined with anisotropic displacement parameters. The constraint $U_{iso}(H) =$ $1.2U_{eq}(\text{carrier})$ or $1.5U_{eq}(\text{methyl carrier})$ was applied.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

This work was supported in part (ALS) by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CW–NWO). It was also supported by the Dutch Economy, Ecology, Technology (EET) programme, a joint programme of the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, and the Ministry of Housing, Spatial Planning and the Environment.

References

- Costas, M., Chen, K. & Que, L. (2000). Coord. Chem. Rev. 200–202, 517–544.
 Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure, Vol. 1. New York: IFI/Plenum.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Ito, S., Okuno, T., Itoh, H., Ohab, S., Matsushima, H., Tokii, T. & Nishida, Y. (1997). Z. Naturforsch. Teil B, 52, 719–727.
- Nishida, Y., Okuno, T., Ito, S., Harada, A., Ohba, S. Matsushima, H. & Tokii, T. (1995). *Chem. Lett.* pp. 885–886.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tanase, S., Foltz, C., de Gelder, R., Hage, R., Bouwman, E. & Reedijk, J. (2004). J. Mol. Catal. A, 225, 161–167.
- Wu, J. Z., Tanase, S., Bouwman, E., Reedijk, J., Mills, A. M. & Spek, A. L. (2003). *Inorg. Chim. Acta*, 351, 278–282.