Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Anthony L. Spek, ${ }^{\text {a }}$ * Duncan M.
Tooke, ${ }^{\text {a }}$ Ariadna Garza-Ortiz
and Jan Reedijk ${ }^{\text {b }}$
${ }^{\text {a }}$ Bijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and ${ }^{\mathbf{b}}$ Leiden institute of Chemistry, Gorlaeus Laboratories, PO Box 9502, 2300 RA Leiden, The Netherlands

Correspondence e-mail: a.I.spek@chem.uu.nl

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.046$
$w R$ factor $=0.134$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Non-merohedrally twinned mer-trichloro(dimethyl sulfoxide- κS)(1,10-phenanthroline)ruthenium(III) chloroform solvate, with $Z^{\prime}=6$

The title compound, $\left[\mathrm{RuCl}_{3}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right] \cdot \mathrm{CHCl}_{3}$, contains six crystallographically independent formula units in the asymmetric cell. The structure features alternating layers of the main molecule and CHCl_{3} arranged parallel to (011).

Comment

The crystal structure of mer-trichloro(dimethyl sulfoxide$\kappa S)(1,10$-phenanthroline) ruthenium(III), crystallized from CHCl_{3} /toluene, with toluene included in the structure, has been reported previously (van der Drift et al., 2002). This structure contains one formula unit per asymmetric unit (i.e. $Z^{\prime}=1$). We now report the structure of the title compound, (I), containing the same main molecule, obtained by crystallization from CHCl_{3} only. The asymmetric unit of (I) contains six molecules of the main complex along with six chloroform molecules of crystallization (i.e. $Z^{\prime}=6$) (Fig. 1). The geometries of the six main molecules are essentially the same (Table 1).

(I)

Fig. 2 illustrates the packing of the main molecules in layers parallel to (011), with the dimethyl sulfoxide molecules sticking out on both sides into an adjacent CHCl_{3} layer. Each of the CHCl_{3} molecules makes a $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ bond (Table 2) to an acceptor atom in an adjacent ruthenium complex molecule.

The unit cell features pseudo-translation symmetry ($0, \frac{1}{3}, \frac{2}{3}$) for the main molecules, but this is not supported by the CHCl_{3} solvent molecules. This pseudosymmetry is also expressed as a pseudo-extinction rule of the form $k+2 l=3 n$.

Experimental

Commercially available analytical grade dimethyl sulfoxide (Biosolve BV), chloroform, hexane and acetone (Sigma-Aldrich), diethyl ether and 1,10-phenanthroline were used without further purification. cis$\left[\mathrm{RuCl}_{2}(\mathrm{dmso})_{4}\right]($ dmso $=$ dimethyl sulfoxide) was prepared according to the literature procedure of Evans et al. (1973). Recrystallized cis$\left[\mathrm{RuCl}_{2}(\mathrm{dmso})_{4}\right](0.3 \mathrm{~g}, 0.618 \mathrm{mmol})$ was dissolved in $\mathrm{CHCl}_{3}(10 \mathrm{ml})$. The solution was placed in a round-bottomed flask containing 1,10-

Received 24 October 2005 Accepted 25 October 2005 Online 31 October 2005
phenanthroline ($0.1125 \mathrm{~g}, 0.625 \mathrm{mmol}$) dissolved in CHCl_{3} (2 ml) with stirring. The reaction mixture was refluxed for 1 h . The darkorange solution was subsequently concentrated to 1 ml . The darkbrown solid was redissolved in acetone (1 ml) whereupon a yellow solid appeared. The suspension was filtered and an orange solution recovered. To this solution was added diethyl ether until an orange solid was formed. The suspension was kept in a freezer overnight. The recovered solid was washed with diethyl ether. This solid was transferred, previously dissolved, into an alumina column for further purification by chromatography, using a $2: 8$ hexane-acetone mixture as eluent. The recovered orange fraction was dried using a rotary evaporator and dissolved in chloroform. On standing for several days, orange crystals of (I) were formed, filtered off, washed with diethyl ether and vacuum-dried at room temperature (yield 40%).

Crystal data

$\left[\mathrm{RuCl}_{3}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right] \cdot \mathrm{CHCl}_{3}$

$$
Z=12
$$

$M_{r}=585.12$
Triclinic, $P \overline{1}$
$a=13.8023$ (16) \AA
$b=19.731$ (3) \AA
$c=25.597(3) \AA$
$\alpha=75.823(9)^{\circ}$
$\beta=74.676(10)^{\circ}$
$\gamma=69.907(8)^{\circ}$
$V=6221.8(15) \AA^{3}$

Data collection

Nonius KappaCCD diffractometer	14784 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.086$
Absorption correction: analytical	$\theta_{\max }=25.0^{\circ}$
$\quad($ de Meulenaer \& Tompa, 1965)	$h=-16 \rightarrow 16$
$T_{\min }=0.490, T_{\max }=0.850$	$k=-23 \rightarrow 23$
125300 measured reflections	$l=-30 \rightarrow 30$
21950 independent reflections	

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0508 P)^{2}\right. \\
& +19.2712 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\text {max }}=2.10 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-1.49 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The asymmetric unit of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Projection of the unit-cell contents of (I) down the a axis, illustrating the layer-type structure.

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 85-\mathrm{H} 85 \cdots \mathrm{Cl}^{\mathrm{i}}$	1.00	2.63	$3.383(10)$	132
$\mathrm{C} 86-\mathrm{H} 86 \cdots \mathrm{Cl} 10^{\mathrm{ii}}$	1.00	2.60	$3.397(10)$	136
$\mathrm{C} 87-\mathrm{H} 87 \cdots \mathrm{Cl} 16$	1.00	2.69	$3.470(10)$	135
$\mathrm{C} 88-\mathrm{H} 88 \cdots \mathrm{Cl}^{\text {iii }}$	1.00	2.62	$3.466(10)$	142
$\mathrm{C} 89-\mathrm{H} 89 \cdots \mathrm{Cl}^{\mathrm{iv}}$	1.00	2.60	$3.441(10)$	141
$\mathrm{C} 90-\mathrm{H} 90 \cdots \mathrm{Cl}^{\mathrm{iv}}$	1.00	2.68	$3.478(10)$	137

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y,-z+1$; (iii) $-x+1,-y+1,-z$; (iv)
$-x,-y+1,-z+1$.

The twinning of the crystal was analysed with the program DIRAX (Duisenberg, 1992) in terms of a 180° degree rotation about [011 $]$. The corresponding approximate twin matrix is given by $\left(\begin{array}{ll}-1 & 0\end{array} 0 /\right.$ $0-\frac{1}{3}-\frac{2}{3} / 0-\frac{4}{3} \frac{1}{3}$). The program MERGEHKLF5 (Schreurs, 2004) was used to generate the twinned data file used in the refinement. The twin ratio refined to 0.714 (1):0.286. H atoms were introduced at

metal-organic papers

calculated positions and refined riding on their carrier atoms (the CH_{3} moiety as a rigid rotor), with $\mathrm{C}-\mathrm{H}=0.95 \AA$ for aromatic, $0.98 \AA$ for CH_{3} and $1.00 \AA$ for chloroform, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for all other H atoms. The structure was checked for missing higher symmetry with PLATON/ADDSYM (Spek, 2003). The highest peak is located 1.00 A from Cl32 and the deepest hole is located $0.66 \AA$ from Ru3.

Data collection: COLLECT (Hooft, 1998); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported in part (ALS and DMT) by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO) and in part by
the Mexican Research Organization CONACYT (grant to AGO).

References

Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Gould, R. O., Israel, R. \& Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Drift, R. C. van der, Sprengers, J. W., Bouwman, E., Mul, W. P., Kooijman, H., Spek, A. L. \& Drent, E. (2002). Eur. J. Inorg. Chem. pp. 2147-2155.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229

Evans, I. P., Spencer, A. \& Wilkinson, G. (1973). J. Chem. Soc. Dalton Trans. pp. 204-209.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Schreurs, A. M. M. (2004). MERGEHKLF5. Utrecht University, The Netherlands.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

