Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Huub Kooijman,^a* Florence C. E. Sarabèr,^b Aede de Groot^b and Anthony L. Spek^a

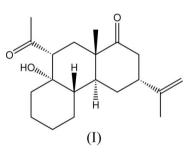
^aBijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and ^bLaboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands

Correspondence e-mail: h.kooijman@chem.uu.nl

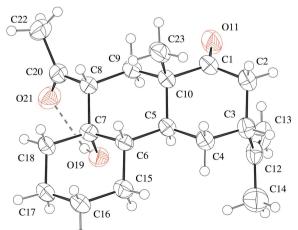
Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.004 Å R factor = 0.046 wR factor = 0.099 Data-to-parameter ratio = 9.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 21 October 2005 Accepted 24 October 2005


Online 31 October 2005

(3*R*,5*S*,6*S*,8*R*,10*S*)-8-Acetyl-7-hydroxy-3-isopropenyl-10-methylperhydrophenanthren-1-one


In the crystal structure of the title compound, $C_{20}H_{30}O_3$, there is an intramolecular hydrogen bond between the hydroxyl and acetyl groups $[O \cdots O = 2.722 \text{ (3) } \text{\AA}].$

Comment

The structure of the title compound, (I), was determined in the course of our investigations toward the synthesis of polycyclic systems using Mukaiyama reactions (Sarabèr *et al.*, 2005). The molecular structure of (I) is displayed in Fig. 1. Selected geometric parameters are given in Table 1. All six-membered rings are in chair conformations, and the relevant asymmetry parameters (Duax & Norton, 1975) are all less than 10° . The absolute configuration of atom C5 was assigned as *S*. The other chiral centres, C3, C6, C7, C8 and C10, have configurations *R*, *S*, *S*, *R* and *S*, respectively.

The title compound displays an intramolecular hydrogen bond between the hydroxyl (O19) and acetyl (O21) groups (Fig. 1). The packing displays no intermolecular hydrogen bonds or short $C-H\cdots A$ contacts.

Figure 1

A plot of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a hydrogen bond.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

Synthesis of the title compound is described elsewhere (Sarabèr et al., 2005). Crystals of (I) suitable for diffraction experiments were obtained by evaporation of a solution of the title compound in hexane.

Mo $K\alpha$ radiation

reflections

Block, colourless

 $0.3 \times 0.2 \times 0.1 \text{ mm}$

 $\theta = 2.0-25.0^{\circ}$ $\mu=0.08~\mathrm{mm}^{-1}$

T = 150 K

Cell parameters from 290

Crystal data

$C_{20}H_{30}O_3$
$M_r = 318.44$
Orthorhombic, $P2_12_12_1$
a = 6.1236 (9) Å
b = 13.8160 (18) Å
c = 21.026 (3) Å
V = 1778.9 (4) Å ³
Z = 4
$D_x = 1.189 \text{ Mg m}^{-3}$

Data collection

Bruker Nonius KappaCCD area-	1214 reflections with $I > 2\sigma(I)$
detector diffractometer	$R_{\rm int} = 0.104$
φ scans, and ω scans with κ offset	$\theta_{\rm max} = 25.4^{\circ}$
Absorption correction: none	$h = -7 \rightarrow 7$
19009 measured reflections	$k = -16 \rightarrow 16$
1916 independent reflections	$l = -24 \rightarrow 25$

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.046$	independent and constrained
$wR(F^2) = 0.099$	refinement
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0479P)^2]$
1916 reflections	where $P = (F_o^2 + 2F_c^2)/3$
214 parameters	$(\Delta/\sigma)_{max} < 0.001$
214 parameters	$\Delta \rho_{\text{max}} = 0.15 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1		
Selected geometric parameters	(Å,	°).

O11-C1	1.223 (4)	O21-C20	1.221 (4)
O19-C7	1.447 (4)		
O11-C1-C2	121.5 (3)	O21-C20-C22	120.1 (3)
O11-C1-C10	122.3 (3)	O21-C20-C8	122.3 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O19−H19···O21	0.88 (3)	2.01 (3)	2.722 (3)	137 (3)

In the absence of significant anomalous scatterers, Friedel pairs were averaged. The absolute configuration at atom C5 was chosen in accordance with the starting material. The hydroxyl H atom was refined freely. All other H atoms were introduced in calculated positions, with C-H = 0.95-1.00 Å, and refined as riding on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(methyl C)$ or $U_{iso}(H) =$ $1.2U_{eq}$ (other C).

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported in part (ALS) by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO).

References

- Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.
- Nonius (1998). COLLECT Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sarabèr, F. C. E., Dratch, S., Bosselaar, G., Jansen, B. J. M. & Groot, A. de (2005). Tetrahedron. Submitted.
- Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.