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A re¯ection intensity integration method is presented based upon ab initio

calculation of three-dimensional (x, y, !) re¯ection boundaries from a few

physical crystal and instrument parameters. It is especially useful in challenging

circumstances, such as the case of a crystal that is far from spherical, anisotropic

mosaicity, �1�2 peak splitting, interference from close neighbours, twin lattices

or satellite re¯ections, and the case of streaks from modulated structures, all of

which may frustrate the customary pro®le-learning and -®tting procedures. The

method, called EVAL-14, has been implemented and extensively tested on a

Bruker Nonius KappaCCD diffractometer.

1. Introduction

On an area-detector diffractometer, a detector image is

obtained by rotating the sample crystal uniformly over a scan

angle �! on a spindle by preference perpendicular to the

primary X-ray beam, Fig. 1. The usually ¯at and stationary

detector collects the re¯ected and scattered radiation and

generates an array of pixels with numerical values repre-

senting the intensity received per pixel during the scan. Typical

values for a charge-coupled device (CCD) image1 are 620 �
576 pixels of 0.11 � 0.11 mm on a detector surface of about 6.8

� 6.3 cm placed at a distance of 40 mm behind the crystal,

showing re¯ection spots of roughly 1 mm2 (Fig. 2). The set of

images holding the crude re¯ection data is processed to form

re¯ection `shoe boxes': one or more (N�!) consecutive �!
layers of Nx � Ny pixels, with a re¯ection inside like a `mouse

in the bread'.

Methods to obtain net re¯ection intensities from detector

data are known as `evaluation methods'; see for example the

work of P¯ugrath & Messerschmidt (1993), who introduced

the concept of shoe boxes and implemented several evaluation

methods for the FAST diffractometer. We can distinguish

roughly two approaches: data counting and data interpreting.

The classic BPB method is the most familiar example of a

counting method. The net intensity Inet = P ÿ kB, with k the

ratio of the sizes of the P (peak) and the B (background)

region. If only Poissonian noise is involved, and if we have a

constant background or, with a linearly sloping background, a

centred re¯ection, then �2(Inet) = P + k2B. The values for P

and B are obtained by simply counting the intensity in the

respective regions, without any data manipulation whatsoever.

All we need is the correct P enclosure at the right position.

The position follows from the pre-established reciprocal cell

and orientation matrix [R] [equation (1) in x2]; the shape or

size is quite a different matter. For the one-dimensional case

(a classic three- or four-circle diffractometer re¯ection)

Lehmann & Larsen (1979) recommend those P limits that

maximize Inet/�(I). This, however, gives a somewhat too

narrow P region (as can be demonstrated by calculations on

model re¯ections) and the method is dif®cult to apply in two

or three dimensions, where a re¯ection region is not de®ned

solely by one simple ! range. Nevertheless, it is still useful for

long-tailed peaks with hard-to-de®ne limits, as occur often in

neutron diffraction. Bolotovsky et al. (1995) present an

original `seed-skewness' procedure for the two-dimensional

case, i.e. for !-integrated re¯ections or re¯ections falling

completely within one �! image. They start with a small

prospective P region within the Nx � Ny data area (the seed)

and let it grow pixelwise until the skewness of the distribution

of the remaining data, the background, is minimal. We feel this

might fail on very weak backgrounds (a rare phenomenon,

admittedly), when the Poisson distribution is far from normal.

Graafsma et al. (1997) compared this P integration method,

HIPPO, experimentally with the well known pro®le ®tting

Figure 1
Schematic representation of the diffraction experiment. The sample
crystal K is situated at the origin of the Cartesian laboratory system XYZ.
X points to the focus centre; the +Z axis runs along the rotation axis,
which is perpendicular to the primary beam. One re¯ection is shown, with
detector coordinates xD, yD.

1 Numerical data refer to a KappaCCD, manufactured now by Bruker Nonius
BV at Delft.
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program DENZO (Otwinowski, 1993) and found only minor

differences, such as DENZO giving ®nal difference maps of

slightly better apparent quality, or somewhat lower Rmerge

values for HIPPO.

Interpretation methods typically try to scale the observed

re¯ection pro®le [mostly an I(x, y) histogram from ! inte-

gration] to a standard pro®le learnt from suitable sample

re¯ections. The effects of statistical outliers in the pro®le are

reduced because the individual pixel data are not accepted

blindly, like in the BPB method, but are compared with the

expected re¯ection shape. Most pro®le ®tting techniques rest

upon procedures developed by Diamond (1969) and Ford

(1974). Rossmann (1979) and Leslie (1991) exploit various

detector regions to learn local standard pro®les. Kabsch

(1988) improved pro®le learning and evaluation by redis-

tributing the observed pixel data over an appropriate local

three-dimensional grid, such that it looks like the re¯ection

had traversed the Ewald sphere perpendicularly and had been

recorded in layers locally parallel to the sphere's surface. The

transformed re¯ections show less variation in spot size and !
width, by which fewer standard pro®les are required, typically

nine. Otwinowski & Minor (1997) obtain a learnt standard

pro®le from suf®ciently strong re¯ections within a given

detector area and apply this to the weaker re¯ections in the

same region. Bourgeois et al. (1998) propose a pro®le ®tting

method for the integration of weak and/or spatially over-

lapping re¯ections by applying the supposedly similar shape of

suitable re¯ections in the immediate neighbourhood. They

emphasize the importance of an optimal pro®le-®tting area,

which we fully endorse for the BPB integration area or

volume as well.

Pro®le ®tting is the pre-eminent method conceptually,

especially for weak re¯ections and for unstatistical noise (e.g.

spikes, dead pixels) if the correct standard pro®le is applied at

the exact re¯ection position; at the same time, this is its weak

point. With crystals that are far from spherical, or in cases of

anisotropic mosaicity, multiple lattices, satellite re¯ections

from modulated structures, and double-peaked re¯ections

from �1±�2, it may be dif®cult to obtain reliable standards, if

indeed they exist at all. The effects upon the pro®le of crystal

shape, absorption or anisotropic mosaicity may result in each

re¯ection being a standard for itself only, and then we are, in

fact, left with the BPB method. The point is that an empirical

pro®le learning process does not look explicitly for the

physical factors that really explain the various re¯ection

shapes: the re¯ection pro®les are observed, manipulated,

idealized and averaged, but not understood.

Alexander & Smith (1962) predicted the one-dimensional

re¯ection pro®le for a classic equatorial single-re¯ection

diffractometer by convoluting the `sub-pro®les' from the

source size, wavelength range, and crystal shape and mosaicity

(details follow in x3.1). Working on this, Keulen (1969)

formulated the practical rules for the best !-scan angle,

detector aperture dimensions and especially for an optimal

crystal/detector (!/2�) angular velocity scan ratio. Mathieson

& Stevenson (1996) applied a kind of ray tracing to simulate

re¯ection pro®les for this type of diffractometer for small

single-crystal spheres, not for realistic crystals. Here too

optimal values for scan angle, !/2� angular velocity ratio and

detector aperture size for BPB application are obtained, albeit

in quite an elaborate way. Their method is not readily

applicable to three-dimensional re¯ection integration; it does,

however, elucidate the anatomy of the Bragg re¯ection very

well.

Though the BPB method has its drawbacks, we apply it in

EVAL-14 because in many circumstances where pro®le

learning and ®tting are hindered EVAL-14 manages the job: it

predicts the three-dimensional re¯ection position and

boundary for each re¯ection (and for interfering neighbours)

from a few physical instrument and crystal parameters. We feel

that the BPB method with the correct boundary is preferable

to pro®le ®tting with an unreliable standard pro®le.

2. Elementary diffraction geometry

2.1. The central impact

We suppose a standard area diffractometer experiment as

described above (Fig. 1), with crystal rotation on an axis

perpendicular to the primary beam. We de®ne an orthonormal

laboratory axes system XYZ with the Z axis along the rotation

axis, the X axis pointing from the crystal centre (XYZ origin)

to the source centre and with the Y axis completing the right-

handed Cartesian system. Angles and rotations are de®ned

corkscrew-wise, e.g. +X rotated over +90� about +Z ends on

+Y. The +X axis is the angular zero point.

The zero position of the crystal and all its direct and reci-

procal vectors is that with the spindle set at ! = 0.2 Then the

XYZ components of the reciprocal cell vectors a*, b* and c*

de®ne the reciprocal-axes matrix [R]:
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Figure 2
A re¯ection spot on the KappaCCD detector. The real size of this picture
is about 1.2 � 1.2 mm with 11 � 11 pixels of 0.11 � 0.11 mm. An arbitrary
grey scale is applied here. 2 On some instruments the spindle is called '.
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�R� �
a�x b�x c�x
a�y b�y c�y
a�z b�z c�z

0
@

1
A: �1�

The re¯ection normal S0(h, k, l) for a re¯ection hkl, de®ned in

reciprocal space as (ha* + kb* + lc*), has XYZ coordinates:

S0;x

S0;y

S0;z

0
@

1
A � �R� �

h

k

l

0
@

1
A: �2�

The Bragg angle �� for wavelength � is given by

sin �� � �jS0j=2: �3�
S0 is the re¯ection normal in zero position, where hkl will not

re¯ect unless by sheer coincidence. If S0 can be rotated to a

position S! where it makes an angle of 90� ± �� with the +X

axis, then and only then will hkl re¯ect (Fig. 3). We formulate

the central re¯ection condition for S! as

cos � � sin ��= cos�; �4�
with � the angle between the XY projection of S! and the X

axis, and � the elevation of S!, de®ned by sin� = S!,z/|S!|,

which equals S0,z/|S0|. If cos� < 1 then a re¯ecting position S!
exists for +�, and another one for ÿ�. We will explain the case

� > 0 in detail; the case � < 0 is similar.

S0 is brought from its original position !0 to the re¯ecting

position +� by a spindle rotation !:

! � � ÿ !0: �5�

The XYZ coordinates of the re¯ecting S! are:

S!;x � jS0j cos� cos �;

S!;y � jS0j cos� sin �;

S!;z � jS0j sin�:

�6�

The re¯ected ray departs from (0, 0, 0) along r:

r � S! ÿ X=�; �7�
with X the unit vector along the +X axis. Note that rx < 0 for

forward re¯ection, which is applied normally in area-detector

diffractometry.

We obtain the central impact on the detector by lengthening

r until it touches the detector surface. On the KappaCCD (for

example) the crystal±detector distance can be set; in addition,

the `swing angle' � between the detector normal D and the ±X

axis can be set, by pivoting the detector on the Z axis; the

detector horizon remains horizontal. D in the laboratory

system XYZ is then

D �
ÿD cos �
ÿD sin �

0

0
@

1
A; �8�

with D the distance from the crystal to the detector. (For a

detector perpendicular to the through beam, � = 0.)

The impact R on this type of detector in the laboratory

system XYZ is

R � �D �D=D � r�r: �9�
Conventionally, the detector +XD axis points to the right and

the +YD axis points upwards, seen from the crystal; therefore

we de®ne the detector system XDYDZD as follows. If � = 0 (as

in Fig. 1) XD runs along Y, YD runs along Z, and ZD along X;

the system XDYDZD rotates on Z with �. The detector centre

is always at (0, 0, ÿD) in that system, irrespective of �. The

conversion from impact R(x, y, z) to impact (xD, yD) in

detector coordinates is given by

xD � Ry cos � ÿ Rx sin �; yD � Rz: �10�
zD is not very interesting: it always equals ±D. Now the central

impact coordinates (xD, yD, !) for re¯ection S0(h, k, l) are

given by xD and yD from equations (10) and by ! from (5).

2.2. The general impact

For the central impact we assumed a point focus, one

wavelength �, an in®nitely small crystal and one re¯ection

vector S0, i.e. no mosaicity. For a general impact we take into

account the source size, wavelength range, crystal shape and

crystal mosaicity. We represent these factors by corresponding

vector sets de®ned in the laboratory system XYZ, as follows.

Source: vectors (F) to all points of the real or effective X-

ray source.

Wavelengths: the one-dimensional vectors, i.e. numbers, (�)

from �min to �max.

Crystal: vectors (K) to all points within and on the crystal in

zero position. Mis-centring is automatically included if (K) is

obtained from in situ observations.

Figure 3
Re¯ection condition for the central impact. The angle between the
re¯ecting S! and +X must equal 90� ÿ �. Therefore S0, the re¯ection
normal in zero position, must be rotated to S! over an angle ! = � ÿ !0,
with cos� = sin�/cos� [equation (4)]. Note that ! is negative in this ®gure.
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Isotropic mosaicity: a massive cone-shaped bundle of

vectors (Sm) around the central S0, all with length |S0| (Fig. 4).

The cone angle 2� = �, the full isotropic mosaic spread.

Anisotropic mosaicity is described by an extra mosaicity �A

about an anisotropy vector A, ®xed in the crystal system

(Duisenberg, 1983). The circular isotropic mosaic (Sm) area

around S0 (the spherically bent cone base) is elliptically

stretched, preserving |Sm| = |S0|, by an amount �Asin/(A, S0)

along the direction of A � S0.

The vector sets (F), (�) and (Sm) may follow non-uniform

distributions from a non-uniformly emitting source, the �
spectrum and the distribution (e.g. Gaussian) of the Sm
vectors. However, this, and crystal absorption effects, do not

in¯uence the re¯ection boundary (which has our primary

interest), but only the intensity distribution within the re¯ec-

tion body, the pro®le.

A general impact now originates from an arbitrary

(F, �, K, Sm) combination, i.e. an F to some point of the source,

a number � within the wavelength range (�min, �max), a vector

K to some point within or on the crystal in zero position and,

®nally, a vector Sm from the massive cone of Sm vectors around

S0. The re¯ection condition for an (F, �, K, Sm) selection is

that the angle between K±F (the incident ray) and Sm equals

90� ± ��, with �� following from sin�� = �|S0|/2. In general, this

condition is not met with the crystal in zero position and then

Sm must be rotated over a speci®c angle ! to a re¯ecting

position Sm,! (by which K is rotated automatically to K!), such

that the angle � between the XY projections of Sm,! and

F ÿ K! satis®es the general re¯ection condition (Fig. 5):

cos � � �sin �� ÿ sin�FK sin��=�cos�FK cos��: �11�
In this formula �FK is the elevation of F ÿ K!, de®ned by

sin�FK = (Fz ± K!,z)/|F ± K!|, and � the elevation of Sm,!, given

by sin� = Sm,z/|Sm|. (Sm,! and Sm have the same length and

elevation.) The angle � in (11) is not the same as that in the

central impact formula, equation (4). There � = 0 coincides

with the +X axis; here � = 0 coincides with the line F 0K 0
!, the

XY projection of the incident ray K! ± F, Fig. 6. The difference,

�!, is given by

sin �! � �Fy ÿ K!;y�=F 0K 0
!; �12�

with F 0K 0
! = |F ± K!|cos�FK. Now the angle � 0 between the XY

projection of the re¯ecting Sm,! and the X axis is

� 0 � � � �! �13�
and, ®nally, the rotation ! that brings Sm from its original

position !0 to this re¯ecting position � 0 is

! � � � �!ÿ !0: �14�
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Figure 4
Mosaicity model. S0 is the central re¯ection vector S0(h,k,l). With
isotropic mosaicity the mosaic vectors Sm (|Sm| = |S0|) form a massive
circular cone around S0, with 2� = �, the full mosaicity. 1 represents a
general Sm vector; 2, 3 and 4 are special (`extreme') Sm,E vectors on the
cone mantle. With anisotropic mosaicity the circular domain through (2,
3, 4) is elliptically stretched.

Figure 5
General re¯ection condition. K! is an arbitrary element of the crystal
with an arbitrary mosaic orientation Sm,! (i.e. Sm,! is an arbitrary vector
from the massive mosaic cone, Fig. 4). F is an arbitrary point on the focus
(FK! runs along the incident ray K! ÿ F; F is not drawn). Re¯ection
occurs only if the angle between FK! and Sm,! equals 90� ÿ ��, with sin��
= �|Sm,!|/2. Then cos� = (sin�� ÿ sin�FKsin�)/(cos�FKcos�) [equation
(11)], with �FK the inclination of FK! .

Figure 6
Projection of Fig. 5 along Z. S0m is the projection of Sm,0 (not shown in Fig.
5). The rotation that brings S0m to the re¯ecting position S0m;! is ! = �! + �
ÿ !0, with sin�! = (Fy ÿ K!,y)/F 0K 0

!.
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To calculate � from (11) we need �FK, the elevation of F ± K!
with K! in the ®nal position determined by the unknown �
itself. We solve this by repeated application of equations (11)±

(14). A good starting value for ! is that for the central impact,

equation (4), because then K! cannot be more than about half

the angular re¯ection width away from re¯ecting. Usually one

or two iterations suf®ce, which is not surprising: the elevation

�FK of F ± K! [needed in equation (11)] with |F| typically

�220 mm and |K| < 0.5 mm will not change very much by

rotating K on the Z axis.

The re¯ected ray direction r, with origin at K!, is

r � Sm;! ÿ ��Fÿ K!�=jFÿ K!j�=�: �15�
This formula follows from the re¯ecting Sm,! being the

bisector of the in and out rays K! ± F and r, respectively, and

from |Sm,!| = 2sin��/�. The formula for the detector impact R

in XYZ differs from that for the central impact, equation (9),

because now the origin of r is not (0, 0, 0) but the ®nal K!. This

leads to

R � K! � ��D �Dÿ K! �D�=D � r�r: �16�
The detector coordinates (xD, yD) of R are found from

equations (10); the particular impact occurs precisely at

spindle rotation !, equation (14).

Summarizing, each re¯ecting (F, �, K, Sm) selection is

mapped onto XDYD! real space as one impact (for � > 0), with

coordinates (xD, yD, !). The three-dimensional mass of all

possible (xD, yD, !) impacts forms the re¯ection body; !max ±

!min gives its ! lifetime. Note that the mapping is directed: the

reverse path, from a particular impact (xD, yD, !) to a unique

(F, �, K, Sm) combination, is not de®ned (precisely) and

general impacts may coincide.

The central impact (x2.1) is in fact the general impact for the

central values (F0, �0, K0, Sm,0). Here F0 is the vector to the

source centre, �0 is the central wavelength [i.e. (�min + �max)/2],

K0 is the `vector' to the crystal element at (0, 0, 0), and S0 is the

central mosaic vector (see Fig. 4). We use the central impact as

a reference point for the general impacts; it does not neces-

sarily lie in the midpoint of the re¯ection body.

3. The reflection boundary

The three-dimensional re¯ection boundary can be obtained as

the smallest closed surface around `all' general (xD, yD, !)

impacts, but this is not an ef®cient method: practically all

impacts lie inside the body and provide no information about

the external contour. We therefore select only the `extreme'

(FE, �E, KE, Sm,E) combinations, among which are all general

impacts ending on a re¯ection boundary vertex, as we will

show in x3.2. In this formalism FE is a vector to a vertex

(extremum) of a rectangular strip, conforming to the actual

focus dimensions, take-off angle and distance; that is, for a

classic X-ray tube. Other kinds of sources (e.g. a mono-

chromator) should be simulated by a suitable convex polygon

at an appropriate (possibly `in®nite') distance. �E corresponds

to ��1 or ��2. (The line width is neglected: it amounts to only a

few percent of the �1±�2 distance, but it could be included.) KE

is a vector to a relevant (idealized) crystal vertex, with the

(convex) crystal in zero position. (A spherical crystal is

represented by a regular dodecahedron in an arbitrary

orientation, centred on the observed crystal centre.) Sm,E is

one of the 16 evenly distributed vectors Sm on the (an)iso-

tropic cone mantle (Fig. 4). (The number 16 is rather arbitrary,

but adequate here.) In a typical example with four focus and

eight crystal vertexes, we thus have 4 � 2 � 8 � 16 = 1024

(FE, �E, KE, Sm,E) combinations, which, even so, give just as

many impacts (xD, yD, !). Even now only a minority of the

impacts will lie on the re¯ection boundary, but at least we do

not overlook re¯ection body vertexes, as follows from the

`contour adding method' described in x3.2. The desired three-

dimensional hull around these 1024 impacts is a convex object

with very many ¯at faces, of which most are triangles. It is

rather cumbersome to construct and to examine whether a

particular (xD, yD, !) pixel belongs to it or not; therefore we

will abandon this approach. The reasons we mentioned it at all

are ®rstly that it describes the real problem, secondly that the

actual EVAL-14 method is a simpli®cation of it, and lastly, that

we still do need (FE, �E, KE, Sm,E)-type impacts for other

purposes.

We choose to represent the three-dimensional re¯ection

boundary by three mutually perpendicular two-dimensional

projections: XDYD, YD! and !XD, which are much easier to

obtain and to apply.3 The XDYD projection is familiar: it is the

!-integrated re¯ection spot on the detector; the others

correspond to side views along XD and YD, respectively. The

last two projections are especially useful if the re¯ection and

its surrounding background extend over more consecutive�!
images, because then the background contribution is reduced

compared with that of the XDYD projection alone. Pixels with

at least one vertex within all three re¯ection projections are

attributed to the peak region P; the remaining are attributed

to the background region B.

We assemble two-dimensional XDYD, YD! and !XD

re¯ection boundaries by convoluting calculated two-dimen-

sional sub-re¯ection contours, as explained in x3.2, but ®rst we

give details of the individual sub-re¯ection calculations.

3.1. Sub-reflections

As mentioned already, a complete re¯ection can be thought

of as the convolution of sub-re¯ections (Alexander & Smith,

1962). A sub-re¯ection is a hypothetical re¯ection resulting

from only one of the factors focus, wavelength, crystal shape

or mosaicity, while the remaining three factors are reduced to

central (`point') values. For our re¯ection-contour predicting

method, we need only the contours of the sub-re¯ections, not

the intensity distribution within the contour. We describe the

procedure for the XDYD contour; the YD! and !XD contours

are found in an analogous way.

3 The three projections include of course a larger volume than the re¯ection
body, but we accept this imperfection for the sake of the simplicity of the
method.
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Figure 7
Various calculated sub-re¯ections, each with realistic values for one factor (i.e. for focus size, wavelength range, crystal size or crystal mosaicity), while
the others are set to `zero'. In (e) to (h) a surrealistic mosaic value is chosen, for instructive purposes. General data: detector distance 40 mm, swing-angle
zero, � = 20�, �= 20�, except for (e) and ( f ), where � = 2�. Realistic values: focus (sealed tube) 0.3 � 3 mm, distance 220 mm, take-off angle 6.4�. � range:
0.70930±0.71359 AÊ (Mo radiation). Crystal: three-sided skew prism with an overall size of 0.3 � 0.4 � 0.5 mm. Mosaicity: 0.8�. (a) Focus XDYD sub-
re¯ection. Closest surrounding box xD � yD: 0.10 � 0.09 mm. 3000 arbitrary general impacts are shown; the large spot is the central impact. (b) � XDYD

sub-re¯ection; practically a straight line. Closest surrounding box xD� yD: 0.28 � 0.12 mm. 3000 general impacts are shown, all lying on the line; the large
dot is the central impact. (c) Crystal XDYD sub-re¯ection. Here the crystal is a skew three-sided prism with an overall size of 0.3 � 0.4 � 0.5 mm. It is
misscentred deliberately and therefore the central impact, from the crystal element (0, 0, 0), does certainly not lie in the re¯ection centre. Closest
surrounding box xD � yD: 0.34 � 0.28 mm. The specks, from 3000 arbitrary impacts, show a greater density near the re¯ection centre, from the
`projection' of the crystal volume upon the detector. (d) Mosaic XDYD sub-re¯ection with 3000 mosaic impacts. Closest surrounding box xD� yD: 0.18 �
0.47 mm. (e) Mosaic XDYD sub-re¯ection impacting near the XD axis (� = 2�) for an unrealistic mosaicity of 15�. The `powder arc' is clearly visible (xD
and yD are on the same scale here). The dots on the arc are the impacts from 20 extreme mosaic vectors Sm,E (on the cone mantle, Fig. 4). By taking the
convex hull (as we do) we include the surface between the string and the bow, but even here the practical effect for the complete re¯ection (Fig. 9a) is
negligible. Closest surrounding box xD� yD: 0.52 � 9.32 mm. ( f ) XD! sub-re¯ection for the same re¯ection as in (e); XD runs horizontally in this ®gure.
Here again the black dots are exact impacts from the same 20 extreme mosaic vectors as in (e). The convex hull here includes the region between the
vertical line on the right (which runs along !) and the skipped (seven) points. The practical effect is insigni®cant, as follows from the dimensions of the
closest surrounding box xD� !: 0.52 mm � 15.0�. As follows from (e) and ( f ) the three-dimensional mosaic sub-re¯ection region forms a closed smooth
convex domain on the `powder cylinder'. The relevant part of this cylinder is obtained by translating (e) along !, i.e. perpendicular to the plane of the
®gure, the detector. If the domain cuts the XDYD plane it overlaps itself in the YD projection, as in ( f ). (g) General mosaic XZ sub-re¯ection for a
mosaicity of 30�. Closest surrounding box xD � zD: 6.77 mm � 32.06�. If the mosaic sub-re¯ection lies completely above or below the detector XDYD

plane (which is usually the case) the convex contour is correct; (e) and ( f ) show the exception. The sub-re¯ection is a deformed projection of the circular
mosaic domain and therefore the central impact does not lie in the sub-re¯ection centre. The specks are from 3000 calculated arbitrary mosaic impacts.
The greater density around the central impact results from an imposed Gaussian directional distribution model for the mosaic Sm vectors. (h) General
mosaic XY sub-re¯ection for the same re¯ection as in (g). The small circles represent the impacts from the extreme mosaic vectors on the cone mantle.
Closest surrounding box xD � zD: 6.77 � 17.24 mm.
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The source sub-re¯ection XDYD contour is the two-

dimensional convex hull4 (¯at polygon) around the (xD, yD)

coordinates of the special impacts (FE, �0, K0, S0), i.e. those

with FE = FE1, FE2, FE3 or FE4, respectively, if the focus has

four vertexes, and central values �0, K0 and S0 for the other

vectors.

The crystal sub-re¯ection XDYD contour is the convex hull

around the (xD, yD) coordinates of the impacts (F0, �0, KE, S0)

for all relevant crystal vertexes KE.

The XDYD sub-re¯ection contour for the wavelength is the

line from impact (F0, �1, K0, S0) to impact (F0, �2, K0, S0), and

back: a contour is a closed loop.5

In the XDYD projection all 16 mosaic impacts

(F0, �0, K0, Sm,E) lie on a curved line through the central

impact, which is actually a small part (�/360) of the powder

circle (with � the full mosaic spread in degrees). [In fact, all

mosaic impacts (F0, �0, K0, Sm) lie on this arc.] The corre-

sponding convex hull looks like a bow with a string: all impacts

lie on the bow; the empty string completes the contour. This

unavoidably includes the surface between string and bow, but

the practical consequences are negligible.

In the YD! and !XD projections, the mosaic sub-re¯ection

contours are more or less elliptical or egg-shaped loops. For

re¯ections close to the detector XD axis (i.e. |�| ' 0) they look

partially folded up in the YD! projection. For all practical

purposes, however, the convex hull describes the sub-re¯ec-

tion shape adequately.

The YD! and !XD contours for the crystal and source sub-

re¯ections resemble their respective XDYD contours: a kind of

skew shadow of the crystal and the focus. The YD! and !XD

wavelength contours are practically straight lines, as in the

XDYD projection.

In Fig. 7 some calculated sub-re¯ection contours are shown,

both for realistic and for strongly exaggerated parameter

values.

3.2. Predicted two-dimensional reflection contours

The ®nal two-dimensional contours are constructed by

`adding' the corresponding calculated contours of all sub-

re¯ections. To add two contours A and B we translate B along

the edges of A (Fig. 8). Note that we add only the contour

shapes, not the contents. With more than two contours, as we

have, we add the third to the sum A + B, etc. The adding

sequence is immaterial: the operation is commutative. This

contour convolution method supposes that the shape of

contour B does not change signi®cantly over the shift

distances involved by moving it along the edges of A, i.e. the

response function B applies to the whole A region. This is, by

the way, also tacitly assumed in convolution formulae, such as

presented by Alexander & Smith (1962) and thereafter. Not

every extreme combination leads to a ®nal contour vertex, but

a vertex of this contour originates from some extreme

combination indeed. For example, in Fig. 8 we have 4 � 4 = 16

extreme combinations (the black dots in A + B), but only 8 of

these form the complete contour for A + B.

We can compare the predicted contour from the adding

procedure with the real contour around `all' impacts by ®ring

random general impacts (F, �, K, Sm) and seeing whether in

the end the re¯ection contour is ®lled precisely, which is a

fascinating phenomenon to watch on the computer screen.

However, it is faster and more reliable to generate system-

atically the extreme impacts (FE, �E, KE, Sm,E) only, because

these constitute an in®nitely small fraction of the general

impacts and they surely include the ®nal contour vertexes.

Fig. 9 shows these impacts and the contours predicted by

EVAL-14.

Figure 8
Adding the contours A and B by translating B along the edges of A. This
method is applied repeatedly to construct a complete re¯ection from the
calculated sub-re¯ections.

Figure 9
Predicted XDYD and XDZ! re¯ection contours, (a) and (b), respectively,
obtained from the `sum' (convolution) of the calculated sub-re¯ection
contours for (F), (�), (K) and (M) (cf. Figs. 7a±7d) by repeated
application of the method illustrated in Fig. 8. The specks are the
calculated `extreme impacts', here 4 � 2 � 6 � 20 = 960 from the extreme
combinations (FE, kE, KE, Sm,E) from four focus, two �, six crystal (three-
sided skew prism) and 20 mosaic vertexes. [These 960 points correspond
to the 4 � 4 = 16 dots for (A + B) in Fig. 8.] The black dot is the central
impact. The `structure' arises from the extreme combinations not being
random points. Somewhere in the left of the contour in (a) there is a
convex part that should be concave, from the mosaic arc. This is clearly
not visible. Re¯ection dimensions (closest surrounding box xD� yD� !):
1.15 mm � 1.65 mm � 1.63�. The size of this box may differ considerably
per re¯ection (see Fig. 10). Parameters: detector distance 40 mm, swing
ÿ30�, focus 0.3 � 3 mm at 220 mm, take-off angle 5.7�, �1 = 0.7093, �2 =
0.7136 AÊ , crystal size 0.3 � 0.4 � 0.5 mm, mosaicity 1�.

4 Methods to calculate the two-dimensional convex hull are described by
Sedgewick (1984).
5 Actually the � sub-re¯ection is a very small part of a ®gure-of-eight-like
curve centred on the through beam, as physically older crystallographers will
remember from rotation diagrams.
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3.3. Extra sub-reflection contours

We introduce extra sub-re¯ection contours to handle the

mica effect and the detector point spread. The contours are

simply added to the sum of the re¯ection contours so far, if

applicable.

3.3.1. Satellite reflections from modulation. With modu-

lated structures, e.g. mica-like substances, the re¯ection

regions in reciprocal space are elongated symmetrically along

a common direction u. Sometimes we can distinguish separate

satellite re¯ections at regular distances from the main re¯ec-

tion S0; sometimes a more or less continuous streak of satel-

lites is observed. In the ®rst case the satellites can be evaluated

separately; with streaks the complete region is evaluated as

one re¯ection (leading to an averaged crystal structure). Then

the projected sub-re¯ection contours (lines) run from the

(xD, yD), (yD, !) or (!, xD) impact coordinates for

(F0, �0, K0, S0 ÿ u/2) to that for (F0, �0, K0, S0 + u/2) and back,

with |u| the length of the satellite region. Note that �� varies

along u as sin�� = �|S0 + cu|/2, with c varying from ÿ1
2 to +1

2.

3.3.2. Detector point spread. The point-spread effect refers

to the phenomenon that (strong) radiation hitting one pixel

may affect neighbouring pixels. We simulate a circular effec-

tive point-spread contour on the detector by a suitably sized

regular polygon centred on the central impact. We do not have

to calculate impacts here: the edges of the polygon itself

directly form the extra sub-re¯ection contour.

4. Net intensities and weights

Our intensity evaluation method is essentially a BPB method.

Shoe-box pixels with at least one vertex inside the three

calculated contours are considered as gross peak data (NP

pixels); the others are considered as background (NB pixels),

typically 200 and 1500, respectively. A linear least-squares

local background function B(xD, yD) is calculated through the

NB background pixels:

B�xD; yD� � axD � byD � c: �17�

Background pixels deviating more than 3�(B) per pixel [see

equation (20)] are excluded and a new least-squares back-

ground is calculated, in an iterative process.

The net intensity per pixel in the P region, Inet,pp, is obtained

by subtracting the ®nal B(xD, yD):

Inet;pp�xD; yD; !� � P�xD; yD; !� ÿ B�xD; yD�: �18�

If, for a not too weak re¯ection, the centre of gravity of the

re¯ection body from all Inet,pp pixels differs signi®cantly from

the expected centre, the predicted (xD, yD), (yD, !) and (!,xD)

re¯ection contours are shifted accordingly and the whole

peak/background discriminating process is repeated. By this,

some pixels will be renamed from peak to background pixel,

and vice versa. If there is no reason to shift anymore an extra

®nal shift corresponding to the difference between the central

impact for � = (2�1 + �2)/3 and for � = (�1 + �2)/2 is applied.

This allows, in a ®rst approximation, for the difference

between the centre of gravity and the middle of the net

re¯ection region. Especially for higher � angles, as occur in

small-molecule work, the last shift is not negligible at all.
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Figure 11
EVAL-14 at work on a twin lattice. Windows 8 through 14 show the
primary data: seven slices each of 25 � 25 pixels with a �! depth of 0.5�,
forming the shoe box. The central contours in windows 10, 11 and 12 are
the expected contours of the main re¯ection in those slices; the two
(stronger) re¯ections extending over windows (8, 9, 10) left and (11, 12,
13) right are intruders from a twin lattice, falling neatly within their
expected contours. Windows 1, 2 and 3 are the yD!, xDyD and !xD
projections, respectively, of the complete shoe box. The row 4, 5 and 6
gives the ®nal results: the aliens are eliminated and the BPB method can
be applied successfully. Window 7 shows the complete detector with the
position of the re¯ection under consideration (open black cross), detector
centre (white cross) and primary beam impact (white circle); window 15
gives the net ! re¯ection pro®le. For details of the lattices see the work by
Lutz et al. (1999).

Figure 10
(a) Schematic representation of the whole detector with the predicted
XDYD re¯ection contours for one and the same crystal but for different
re¯ections, impacting at four indicated positions. `o' is the primary
beamstop. Parameters: focus 0.3 � 3 mm at 220 mm, take-off angle 5.7�,
�1 = 0.7093, �2 = 0.7136 AÊ , detector distance 40 mm, swing = ÿ35�,
spherical crystal diameter 0.2 mm, mosaicity 2�. (b) The same re¯ections
equally magni®ed. Note the �1±�2 splitting, especially in re¯ections 1 and
3. The specks within each contour are some calculated random impacts.
Results: re¯ection size (closest surrounding box xD � yD � !): (1)
1.52 mm � 3.66 mm � 2.83� (� = 37.19�); (2) 2.84 mm � 1.92 mm � 13.60�

(� = 16.47�); (3) 0.88 mm � 2.36 mm � 2.58� (� = 35.94�); (4) 3.10 mm �
0.35 mm � 2.14� (� = 3.10�). Re¯ection 2 (which would extend over 27
images if �! where 0.5�, as in Fig. 11) is a typical example of a re¯ection
that could well be rejected by EVAL-14 by the rule |�| + � < 90� ÿ �
(see x6).
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Finally, the net intensity for the complete re¯ection, Inet, is

found by adding Inet,pp(xD, yD, !) from equation (18) for all NP

pixels in the ®nal P region:

Inet �
P
NP

Inet;pp�xD; yD; !�: �19�

In general the pixel values P(xD, yD, !) are not on an absolute

scale, but the relation between these values and Poissonian X-

ray counts is rather well known: one Poissonian X-ray count

increments a pixel value by about 1.6; the exact value depends

on the actual detector. We therefore can apply the simple a

priori Poisson sigma, �(N) = N1/2, if we divide all observations

by `1.6'. Then [strictly speaking only for a centred centro-

symmetrically shaped re¯ection, or for a and b physically zero

in equation (17)] �(Inet) = (P + k2B)1/2, with P =P
NP
P�xD; yD; !�, k = NP/NB and B =

P
NB

B�xD; yD; !�, i.e.
the sum over all observed B pixels, not the calculated B values

from (17).

We propose a quality factor Q, a kind of peak/background

ratio, which can very well serve as a relative weight. For Q we

do not need to know the factor `1.6' and there are no

restrictions imposed upon a or b in (17) or upon the re¯ection

shape or position. First we calculate sigma per pixel for the

background by pixelwise comparison of the observed inten-

sities Bobs(xD, yD, !) with the calculated background

B(xD, yD) from (17):

��B� �
h
�NB ÿ 3�ÿ1 P

NB

��Bobs�xD; yD; !� ÿ B�xD; yD�
��2i1=2

:

�20�
This gives a quite reliable estimation by the large number of

independent background data NB. Sigma expected for the

total background extending under the NP peak pixels is

�(B)NP
1/2; hence we de®ne the quality factor Q as

Q � Inet=
�
��B�N1=2

P

�
: �21�

Note that Q is entirely based on observed pixel intensities. It

appears that re¯ections with Q < 10 (roughly) are too weak to

be observed on our KappaCCD.

If the background within a shoe box depends signi®cantly

on ! this must be included in equation (17) as B(xD, yD, !) =

axD + byD + c! + d. Then in (19) and (20) B(xD, yD) becomes

B(xD, yD, !), and in (20) (NB ± 3) will read (NB ± 4). This may

occur with long-living re¯ections, extending over many �!
images (which, by the way, should be discarded, as is discussed

in x6).

5. Alien reflections

When the diffraction pattern originates from two lattices we

®nd both lattices with the indexing program DIRAX

(Duisenberg, 1992).6 We denote the main lattice and its

re¯ections by A and the secondary by B. Both reciprocal cell

and orientation matrixes [RA] and [RB] are supplied to

EVAL-14, which calculates the expected contours for the

main re¯ection A and those for B re¯ections not lying

completely outside the A shoe box. Interfering neighbours A0

from A itself, as can happen with very short reciprocal axes,

are also treated as aliens. If in a �! image the re¯ection

region B is completely separated from A, all pixels in that

layer belonging to B are ignored both for peak and back-

ground calculations. If B and A overlap partially, the intensity

in the regionA + B is distributed overA and B in the ratioA/B

obtained from non-overlapping regions, in an iterative

process. If the re¯ections overlap almost completely the sum is

output.

When lattice A has been evaluated we usually reverse roles

for A and B and evaluate all images for the B re¯ections.

Fig. 11 illustrates twin-lattice handling.

6. Comments and discussion

In EVAL-14 a purely kinematical re¯ection process is

assumed, i.e. an (F, �, K, Sm) combination results in one

re¯ected ray with a precise re¯ection angle 2�� given by

Bragg's Law. This model is not always applicable, e.g. not with

®bres, where an appreciable �2� range may arise from the

mosaic blocks consisting of very few cells and where cell

dimensions may vary somewhat through the crystal. At the

moment there are no provisions for this lattice distortion in

the public KappaCCD version of EVAL-14, but it is a subject

of investigation at our laboratory.

Re¯ections with not a single (F, �, K, Sm) combination

yielding cos� � 1 [equation (11)] are completely absent in all

images: the `cusp re¯ections'. For re¯ections with cos� ' 1 for

the central impact [i.e. |�| + � ' 90�, equation (4)] there are

two possibilities. First, some combinations do re¯ect (those

with cos� � 1), but others never will (cos� > 1), no matter how

long we rotate !; then we have an essentially incomplete

re¯ection. Note that this is not the same as a partial re¯ection,

which continues in the adjacent�! image. Secondly, cos� � 1

(but still cos� ' 1) for all (F, �, K, Sm) combinations. This may

seem to be a complete normal re¯ection, but we reject it

nevertheless. Re¯ections with cos�! 1 extend over many�!
images, as follows directly from the calculated ! size of the

re¯ection body. In classic terms, such re¯ections are slowly

grazing the Ewald sphere instead of quickly traversing it.

Moreover, the Lorentz part of the Lp factor is unreliable and

the absorption coef®cient can vary considerably during the

long re¯ection lifetime. Finally, these re¯ections may be self-

overlapping, that is if in a �! image the (xD, yD) impact

regions for the +� and ÿ� positions cross the line of inter-

section of the XZ plane with the detector. (For a perpendi-

cular detector this line is the YD axis in Fig. 1.) To avoid all this

we require |�| + � < 90� ÿ �, with � amply allowing for

mosaicity, focal and crystal angular width, and the wavelength

range effect, e.g. � = 6�. If the excluded and cusp re¯ections

are absolutely needed and no equivalent re¯ections are

available, then one or two extra data collection runs are

6 If there are more than two lattices involved DIRAX will ®nd these too, but
then expert aÁ la carte EVAL-14 data handling comes into play.
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necessary with the crystal in suitably different orientations.7

On a single-axis diffractometer this requires crystal re-

mounting in appropriate orientations.

The general impact equation (11) is also applicable to an

experiment with the spindle making an oblique angle with the

X axis, the primary beam. We only have to express all relevant

vectors in an auxiliary system X 0Y 0Z 0 with Z 0 along that

rotation axis and, for convenience, with X 0 in F0Z
0. It should

be noted that this is a less favourable experimental setup, for

at least two reasons. In the ®rst place, fewer re¯ections will be

activated during a full spindle rotation. For example, in the

extreme situation that the spindle coincides with the primary

beam, not one re¯ection will be integrated. Only relatively few

accidentally activated, incomplete re¯ections will circulate on

the detector, thereby forming powder rings. Secondly, for all

re¯ections the ! lifetime increases (with consequences

mentioned in the paragraph immediately above), as follows

directly from the calculated !max ÿ !min range [equation (14)].

In the same degenerate example, spindle along X, the few

active, incomplete re¯ections last forever and no others will

ever come to life.

The anisotropy vector A is easily found with a four-circle

diffractometer [from  scans (Duisenberg, 1983)], but with an

area detector some experimenting and educated-guesswork is

needed. Mosaic anisotropy manifests itself by unexpected

variations in re¯ection size; more speci®cally, by a larger

`powder arc' on the detector and/or a longer ! lifetime than

predicted by the isotropic Sm model. Re¯ections with S0

perpendicular to A are affected most and this may give a clue:

A runs along S
�1�
0 � S

�2�
0 , if S

�1�
0 and S

�2�
0 are two such re¯ections.

Moreover, A is directed usually along a simple direct- or

reciprocal-lattice vector.

Effective values for source size and distance can best be

established occasionally by experiments with a small perfectly

centred high-quality test crystal, aided by the EVAL-14

(graphical) output; this is an instructive activity.

We do not exploit three-dimensional re¯ection pro®les in

EVAL-14 yet, but these can be constructed from a set of

suitably sampled and weighted general impacts, corrected for

absorption. Such an a priori pro®le might be interesting for a

predicted-pro®le ®tting method (PPF) and therefore it is a

subject under active investigation in our laboratory.

The general impact model is also suited to describe von

Laue re¯ections. In a Laue experiment the crystal remains

®xed in the same ! position for all re¯ections. The re¯ection

condition for an arbitrary (F, K, Sm) combination can be

ful®lled only by presenting an X-ray with wavelength �m
corresponding to �m from the actual angle 90� ± �m between F
± K (along the primary beam) and Sm. This wavelength is �m =

2sin�m/|Sm| (and harmonics) and each combination will re¯ect

its own �m from the source, if available. We can calculate the

re¯ection contour (and neighbour overlap) on the detector,

but also the total active � range. If, as a consequence of a very

asymmetrical crystal shape or mis-centring, the � ranges for a

pair of Bijvoet re¯ections differ in such a way that only one

range includes a signi®cant absorption edge, an (extra)

intensity anomaly may arise. Laue re¯ection handling is not

implemented yet in the EVAL-14 procedure.

7. Conclusion

EVAL-14 is a robust intensity evaluation method. Re¯ections

are integrated by the BPB principle, where the re¯ection

boundary P is predicted from a few physical constants and

experimental parameters. The method can cope with notor-

iously problematic situations, such as a far from spherical

crystal, anisotropic mosaicity, �1±�2 peak splitting, inter-

ference from close neighbours, twin lattices or satellite

re¯ections, streaks from modulated structures, and heavy

absorption effects upon the pro®le, where other integration

methods might fail.

The `general impact' formulation allows future prediction of

(complicated) re¯ection pro®les.

For information on the EVAL-14 program, contact

a.m.m.schreurs@chem.uu.nl.

The development of EVAL-14 started on a Nonius Delft

FAST area-detector diffractometer, obtained through the

Council for Chemical Sciences of the Netherlands Organiza-

tion for Scienti®c Research (CW-NWO), grant 349-276, and

was completed on a Bruker Nonius Kappa CCD, obtained

with ®nancial aid from the Netherlands Technology Founda-

tion (STW), grant 349-441.
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