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1 Introduction

Everybody who looks at a crystal structure marvels how Nature finds a way to pack
complex molecules into space-filling patterns. The question arises: can we understand
such packings without doing experiments? This is a great challenge to theoretical
chemistry.

Most work in this direction uses the concept of aforce field. This is just the po-
tential energy of a collection of atoms as a function of theircoordinates. In principle,
this energy can be calculated by quantumchemical methods for a free molecule; even
for an entire crystal computations are beginning to be feasible. But for nearly all work
a parameterized functional form for the energy is necessary. An ab initio force field
is derived from the abovementioned calculations on small model systems, which can
hopefully be generalized to other related substances. Thisis a relatively new devel-
opment, and most force fields areempirical: they have been developed to reproduce
observed properties as well as possible. There exists a number of more or less time-
honored force fields:MM 3, CHARMM , AMBER, GROMOS, OPLS, DREIDING...

In the present notes it is assumed that the basic aspects of force fields are known.
Normally there will be intramolecular energy terms for bondstretching, angle bend-
ing and internal rotation, although people still use modelsbased on rigid molecules as
building blocks for a crystal. Most essential is always the intermolecular energy, con-
sisting of van der Waals terms (attractive as well as repulsive) and Coulomb energy.
For an introduction the reader is referred to a recent reviewchapter [1].

2 Lattice Energy

Thepacking energy Pis defined as the energy needed to break up a hypothetical non-
vibrating crystal into its constituent non-vibrating freemolecules. Often thelattice
energy Lis defined, which is just minus the packing energy:

L = −P (1)

The packing energy is almost, but not quite, the same as thesublimation enthalpy∆H.
For nonlinear molecules an approximate relation is given by:

∆H = P−2RT (2)

Further complications arise if the molecular geometry in the gaseous state and in the
crystalline state are appreciably different. Moreover, experimental uncertainties in sub-
limation enthalpies may be in the order of 5 kJ/mol [2]. So it is not really simple to
correlate the temperature-independent packing energy with the observed temperature-
dependent sublimation enthalpy.

If relaxation effects upon sublimation are neglected, the lattice energy can be calcu-
lated from the force field as the intermolecular part of the potential energy. In the usual
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formulation the calculation involves a summation over distance-dependent atomic in-
teractionsu(r) for pairs of atoms:

L = 1
2 ∑

k
∑

j
∑
k′

′ukk′(rk, jk′) (3)

wherek indicates an atom in an asymmetric unit,j indicates a symmetry-related set
of atoms (including the lattice translations), andrk, jk′ denotes the distance between an
atomk and an atomk′ in set j. The prime signifies that intramolecular contributions
must be omitted from the summation.

The simplest model of a crystal is a collection of rigid molecules stacked together
in the best possible way. Sometimes such a description is adequate, but usually it
is much better to take intramolecular degrees of freedom into account. This is espe-
cially important for flexible molecules, where the molecular conformation is intimately
linked to the crystal packing. For instance, in carbohydrate crystals the hydroxyl group
conformations must be such that intermolecular hydrogen bonds can be formed.

A severe limitation of most force fields is that electrostatics is introduced by means
of partial charges on the atoms. These charges can be obtained empirically, as an in-
tegral part of the force field, by fitting to experimental data. In some force fields they
must be found from fitting to an ab initio molecular potential. But for an accurate
description of the electrostatic energy a model of point charges is insufficient. A bet-
ter description of the molecular charge distribution is given by a multipole expansion
which is distributed over various sites, usually the atomicpositions [3]. Such a distri-
bution can be found directly from the wave function for a freemolecule or, preferably,
from fitting to the electrostatic potential calculated fromthat wave function.

The assumption of pairwise additive energy contributions is liable to break down
for partially charged atoms. Consider, for instance, two dipoles that polarize each
other. The charges in the second dipole are enhanced by the first one, and so its in-
teraction with a third dipole is not independent of the position of the first one. This
is the origin of cooperative phenomena in hydrogen bonding.As discussed in Sec-
tion 4.4, an approach where polarization is included explicitly can lead to considerable
improvement, but at the cost of great complications in the calculation.

In practice, of course, only a finite number of terms can be taken into account in
the calculation of the lattice energy (Eq. 3). The simplest solution is to introduce a
maximum interatomic distance, thecutoff radius. However, for Coulomb interactions
this may introduce unacceptable errors as illustrated in Figure 1, where the +· · · –
attraction is included but the nearly compensating +· · · + repulsion is discarded.

So the cutoff must not break a neutral unit into charged parts. To this end it may be
useful to divide a molecule intocharge groupswith zero or small total charge, and to
base the cutoff criterion on the centers of these charge groups rather then on the atomic
positions. Even then, convergence is bad and an acceleration procedure as detailed in
section 2.2 is often preferable.
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Figure 1: Breaking charge groups by the cutoff sphere.

2.1 Polar crystals

For Coulomb interactions Eq. 3 reduces to the direct summation:

Udirect =
1

8πε0

N

∑
k=1

∞

∑
j=1

N

∑
k′=1

′ qkqk′

rk, jk′
(4)

whereqk is the partial charge on atomk. Here and in the next sections we consider the
energy of an entire crystal cell, containingN atoms and having a volumeV.

Figure 2: Surface charge in polar molecules.

Here a complication arises for polar crystals, i.e. crystals with a dipole momentµ in
the unit cell. Figure 2 shows how charges will accumulate on the outside of the cutoff
sphere as well as on the inside of the outer boundary of the crystal. Their influence on
a charge in the center of the cutoff sphere can be calculated by classical electrostatics.
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For the first contribution this gives a simple closed formula, but for the second one the
result depends on the external shape of the crystal:

UCoulomb= Udirect−
µ2

6ε0V
+Usurface (5)

For spherically or cubically shaped crystals the surface term is given by:

Usurface=
µ2

6ε0V
(6)

so, not unexpectedly,UCoulomb= Udirect. For a needle or a platelet with the dipole mo-
ment perpendicular to a small face the surface term is zero. Formulae for any paral-
lelepiped have been published [4].

This theory is valid for a hypothetical isolated polar crystal. However, it is very
doubtful whether the surface term should be included in energy calculations for the
real world. It would imply that lattice energies for polar crystals cannot be tabulated
without knowing the crystal form. It has been suggested thatcrystals will tend to find
a form where the surface term is zero, or that external charges will accumulate on
the surface to annul the surface charge exactly (“tin foil boundary conditions”). We
suggest to omit the surface term from energy calculations.

2.2 Convergence Acceleration

Apart from the complications for polar crystals, the directsummation (Eq. 4) would
require a very large cutoff radius to obtain anything resembling an acceptable conver-
gence. In an empirical force field this problem may not be so serious if the same cutoff
is used as was done during the parameterization. But in non-empirical force fields a
careful calculation of the Coulomb energy is important. Following methods devised by
Madelung and Ewald it can be shown that (for non-polar crystals) the exact Coulomb
energy is given by:

UEwald =
1

8πε0

N

∑
k=1

∞

∑
j=1

N

∑
k′=1

′ qkqk′erfc(αrk, jk′)

rk, jk′
+

1
8π2Vε0

∑
h 6=0

|Fh|2exp(−π2h2/α2)

h2 − α
4π3/2ε0

N

∑
k=1

q2
k (7)

The parameterα can be chosen to obtain optimal convergence.N is the number of
atoms in the unit cell,V is the cell volume,h is a vector in reciprocal space andFh is
defined as:

Fh =
N

∑
k=1

qk exp(2πih·rk) (8)
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whererk is the position of atomk in the unit cell. This functional form is formally
identical to the structure factor in diffraction theory.

A careful derivation of Eq. 7 shows that the omission of the terms withh = 0 is not
allowed for polar crystals. Here a fourth term arises, whichturns out to be exactly the
same asUsurface:

UCoulomb= UEwald+Usurface (9)

Comparison with Eq. 5 shows:

UEwald = Udirect−
µ2

6ε0V
(10)

It is important to realize that this equation is valid independent of the question whether
or not the surface energy is included (see Section 2.1). Thatdecision must be based on
physical phenomena, and has nothing to do with the use of Ewald summation which is
just a mathematical trick.

Equations for convergence acceleration have also been developed for other inverse
powers of the interatomic distances. This is especially useful for the dispersion inter-
actions, which depend onr−6. These terms converge much faster than for the Coulomb
energy, but they are all attractive and the sum of many small contributions from outside
the cutoff sphere may not be negligible. Explicit expressions for energies and forces
have been given by Karasawa and Goddard [5].

2.3 Energy Minimization

In the static model a crystal structure corresponds to a minimum in the potential energy
with respect to a set of parameters: the cell axes, cell angles, and the atomic coordi-
nates. Their exact number depends on the space group symmetry. One of the insights
obtained from attempts at crystal structure prediction is that the number of potential
energy minima is enormous. Each minimum corresponds to a possible polymorph.
Theglobal minimumhas the lowest energy, all other ones arelocal minima. Figure 3
illustrates a small portion of one of the many dimensions of the potential energy sur-
face. The deepest minimum (C) could correspond to a low-temperature polymorph,
the broader one (A) could become more favourable at higher temperature because it is
favoured by entropy.

Figure 3: Minima in the potential energy function.
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There is no general solution to the problem of finding all minima, or even only the
global one. All one can do is to start with a certain set of parameters, and then apply
numerical methods to find the nearest local minimum. Computationally this is not a
trivial problem; for details we refer to the literature [6, 7].

One application is to start from the experimental crystal structure. This should cor-
respond to an energy minimum, but in an actual force field it never does. The parame-
ters will show a shift upon energy minimization, which is a measure of the inadequacy
of the force field used. Force fields are often developed with the objective to minimize
these shifts, while also reproducing observed lattice energies (and sometimes also vi-
brational frequencies). For such anempirical force field one expects deviations of a
few % in cell axes and a few degrees in cell angles. Also the positions and orientations
of the molecules in the unit cell should be reproduced with comparable accuracy, as
well as intermolecular contact distances. Especially important is the reproduction of
torsional angles in flexible molecules, since the crystal packing is very sensitive to the
molecular conformation. Sublimation enthalpies can hardly be expected to be better
reproduced than within, say, 5 - 10 kJ/mol [2].

Figure 4: Nonbonded interaction curve.

A few remarks must be made about van der Waals distances. Figure 4 shows the
nonbonded interaction curve. Note the attractive and repulsive regions (separated by
the minimum distancer0) compared to the stabilizing and destabilizing regions (sepa-
rated byu= 0). Althoughr0 is sometimes interpreted as a van der Waals distance, that
is not the definition adopted by crystallographers who take it to be the distance between
two “touching” atoms in neighboring molecules. This distance is always smaller than
r0 since there are many other pairs of atoms further away, whoseattraction must press
the touching atoms into the repulsive region.
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3 Temperature effects

Observed cell dimensions and structural details depend on the temperature. But a force
field, which is a function of only the coordinates, cannot provide the energy as a func-
tion of T. If the force field was parameterized against observed data,it will hopefully
be able to reproduce similar data at some average temperature. If it was parameterized
against quantumchemical data, it will refer to a hypothetical vibrationless state which
does not even exist at 0 K. Then the calculated cell volume is expected to be, say, 5%
smaller than observed at room temperature.

Corrections for temperature effects can be calculated under the assumption that
deviations from the equilibrium geometry are small enough to allow the use of the
harmonic approximation. Then the well-developed theory oflattice vibrations can be
used to calculate the thermal effects on energy, entropy andfree energy. This approach
is summarized in the next section.

3.1 Lattice Vibrations

Any textbook on statistical thermodynamics explains how the free energy of a har-
monic oscillator can be found from its vibrational frequency (ν), which in its turn can
be found from the mass and the force constant:

4π2ν2 =
1
m

∂2U
∂r2 (11)

The same principle applies to harmonic lattice vibrations in a crystal, only the
computation is more complex. It can be shown [8] that the normal vibrations for each
wave vector(q), which is a vector in reciprocal space, can be treated separately. To
this end we must find the eigenvalues of thedynamical matrix:

Dkg,k′g′(q) =
1√

mkmk′
∑
j ′

(

∂2U
∂r jkg∂r j ′k′g′

)

exp[iq·(r j ′k′ − r jk)] (12)

Herek,k′ label the atoms in a unit cell,j, j ′ label unit cells, andg,g′ = x,y,z. Note
that, due to translational symmetry, this matrix does not depend on j. The essential
quantity to be calculated is the second derivative of the potential energy with respect
to the atomic coordinates.

There are 3N eigenvalues of the dynamical matrix, each corresponding to4π2ν2(q).
They lead directly to the free energy [9, pg. 197]:

A = L+ <
3N

∑
n=1

[ 1
2hνn(q)+kT ln(1−e−hνn(q)/kT) >q (13)

Here the average is over a suitable number (10 - 100) of wave vectors, chosen sys-
tematically or randomly within a unit cell of reciprocal space. The calculation can
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be done for different polymorphs, with individual frequency spectra and lattice ener-
gies. Note the zero-point vibrational energies which may have an important effect at
all temperatures.

This theory is incomplete since only harmonic terms in the potential energy are
considered. Its most obvious defect is that there is no thermal expansion [8, 10]. Ex-
tending the theory to anharmonic effects is rather difficult. Numerically, the calcula-
tions outlined above can be carried out at several geometries around the energy min-
imum, after which the structure with lowest free energy can be selected. This should
give the desired temperature dependence of the crystal structure.

4 Prediction of Crystal Structures

As discussed above, important observable quantities that should be reproduced after
energy minimization in a certain force field are the sublimation enthalpy and the crystal
geometry. It was also noted that it is essential to have a rough starting geometry before
one can start an energy minimization at all. For force field development this starting
geometry is generally the experimental crystal structure.Sometimes several data on
one structure are available, for instance at different temperatures, and their differences
immediately indicate the best that can be expected from a force field without some
explicit temperature dependence.

Even more interesting is the case where more than one polymorph is known. It is
important to remember that the energy landscape for a crystal has many local minima,
each corresponding to a possible polymorph. Energy minimization will only lead to the
nearest local minimum. This phenomenon reminds us that one should not be content
with reproduction of the observed geometry, but that the real goal of crystal modeling
should becrystal structure prediction. This is an exciting field of research that has
been explored during the last decade. A few review papers areavailable [11, 12, 13].

The problem of crystal structure prediction can be divided in two stages. In the
first stage we have to generate possible crystal structures.In the second stage we
have to find out which ones correspond to observable polymorphs. Contrary to what
one might expect, the second stage is usually the more difficult one. I would like to
make the point that, if one could predict crystal structuresreliably, one would have not
only a very good force field but also a fundamental understanding of crystallization
phenomena and crystal physics in general.

4.1 Stage 1: generation of possible structures

The first stage of crystal structure prediction is to make a list of structures that could
possibly occur. Various strategies to this end have been published. Some of these
have used database statistics, but most have been based on energies calculated by an
empirical force field. The currently available programs andmethods can be found in
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the reports on the two Cambridge blind tests on crystal structure prediction [14, 15],
summarized in Section 4.3.

Quite a few unknown parameters are involved: up to six for theunit cell, and for
each independent molecule three positional parameters, three orientational parameters,
and possibly a number of parameters that determine the molecular conformation. One
approach [16] is to start with clusters of molecules and thento combine these to form a
three-dimensional lattice. Alternatively [17], the spacegroup is chosen in advance and
possible structures are generated by one of various search strategies: random search,
grid search, Monte Carlo or molecular dynamics.

The first decision is the number of independent molecules in the asymmetric unit.
Let us callZ the number of residues in a unit cell,Z′ the number of residues divided
by the multiplicity of a general position, andZ′′ the number of crystallographically
independent molecules. The difference betweenZ′ andZ′′ is subtle: a molecule on
a special position may haveZ′ = 1/2 but Z′′ = 1; likewise, for a hydrateZ′ may be
equal to 1 butZ′′ must be larger. The CSD contains about 10% hydrates and 6% other
solvates; for homomolecular structures 8% of the structures hasZ′ > 1. Yet in crystal
structure prediction it is nearly always assumed thatZ′′ = 1.

The second decision concerns the space groups to be studied.In principle it would
be sufficient to assumeP1 with various values forZ′′, which should lead to every
conceivable crystal structure. In practice crystal structure prediction tends to become
impossible forZ′′ > 2, so it is necessary to fix the space groups to be studied. For-
tunately, 95% of the molecules crystallize in only 8 space groups (and less for chiral
molecules). Most programs do not allow for molecules on special positions, but in that
case the structure can often be found in a space group with lower symmetry.

The third decision concerns the geometry of the crystal building blocks, usually
one individual molecule. Many studies concern the methodology of crystal structure
prediction, so they are performed on substances with known structures. One should
then resist the temptation to take the molecular building block from the observed struc-
ture, which is quite unfair - especially for flexible molecules. One should use model
building and energy minimization for the free molecule. Forflexible molecules several
conformations are possible. Some of them may have a relatively high intramolecular
energy, but that may be compensated by a favourable packing energy.

A complete search usually finds the important structures more than once. The
equivalence is not always easily recognized, because different space group settings
are possible (Figure 5). An algorithm to cluster equivalentstructures can be based
on a comparison of interatomic distances, which should be exactly the same after full
energy minimization.

The final result of the first stage is a list of unique hypothetical structures. This
list is often surprisingly long, with many structures in an energy range of only a few
kJ/mol. Not all of these correspond to possible polymorphs.Some may be intrinsically
instable because they correspond to saddle points in the energy. This can be verified by
inspecting the normal vibrations for imaginary frequencies, or by repeating the energy

10



Figure 5: Equivalent settings for the same structure.

minimization after expansion to one or more unit cells in space groupP1 to remove
restrictions in the parameter space. Other minima may be thermally instable because
they can easily convert into more favourable structures; see for example minimum B
in Figure 3. Such structures can be eliminated by molecular dynamics simulations.

Nevertheless, it is unlikely that the numbers of distinct hypothetical structures will
ever become really low. This suggests an enormous potentialfor polymorphism which,
theoretically, should be the rule rather than the exception. Indeed, according to Mc-
Crone [18] the number of polymorphs of a given substance is proportional to the effort
that one is prepared to put into crystallization experiments. Considering that Sarma
and Desiraju [19] have identified only 3.5% of the entries in the CSD as polymorphic,
a fertile field of research should still be open here. In any case there is always the pos-
sibility that hypothetical structures with low energy can actually be realized in nature,
but have never been observed.

4.2 Stage 2: selection of the right structure(s)

In the second stage of the structure prediction the most probable candidates for exper-
imentally observable structures must be selected. Unfortunately, the thermodynamical
approach (looking for the structure with the lowest free energy) may not be sufficient.
The crystallization process is a complex combination of thermodynamics and kinetics.
There are cases known where different polymorphs crystallize even simultaneously
from the same solution! But as such phenomena are difficult tounderstand quantita-
tively, this possibility is generally disregarded.

Furthermore, many studies are limited to energy calculations. So, in fact, the cal-
culated structures refer to a static structure, and no transition temperatures between
polymorphs can be predicted. Thus we are neglecting the entropy, the vibrational con-
tributions to the energy, and the thermal expansion. The situation is illustrated in Fig-
ure 6. Some of these corrections may be important, and the only possible justification
for their neglect is that errors in the force field are probably even larger. The effects of
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pressure are easily incorporated by adding a PV term to the energy, thus changing to
enthalpy.

Figure 6: Energies and free energies from modeling comparedwith the real world.

At the end of the first stage the key question, of course, is whether or not the observ-
able polymorph(s) are present in the final list of structures. Assuming that the search
has covered the right space groups, the rightZ′′ and the right molecular conformations,
experience shows that the chances of success decrease rapidly for 20 or more degrees
of freedom. The answer to the question is roughly [20]:

• “usually”, for rigid molecules withZ′′ = 1

• “often”, for flexible molecules withZ′′ = 1 or simple rigid molecules withZ′′ = 2

• “seldom”, for flexible molecules withZ′′ > 1

It is not always trivial to recognize an observed polymorph in the list of possible struc-
tures: what comes out of the calculations can only be an energy-minimized structure.
The observed structure will have a different geometry, and quite probably a different
space group setting. A pragmatic solution is to compare the powder diffraction dia-
grams. If no similarity can be found, the prediction may be said to have failed. But
the yes or no decision is not always straightforward. A more objective solution is
to search the list for the energy-minimized experimental structure, which should be
retrieved in every possible detail. However, if this structure is greatly deformed by
the energy minimization we can hardly call the structure prediction really successful.
Important measures of success are further the energy difference (∆E) and the ranking
(R) with respect to the global energy minimum (Figure 7). A sloppy search will find
only a few structures. With luck, the experimental structure is one of them, and it will
have a good ranking because there are so few structures. A careful search will find
more structures and so the ranking and energy difference canonly get worse. Not all
referees appreciate this fact.
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Figure 7: The energy difference (∆E) and ranking (R) of an energy-minimized experi-
mental structure with respect to the global energy minimum.

As an example of the difficulty of crystal structure prediction in flexible molecules
we refer to our study [21] of 32 small anhydrous pyranoses, selected to haveZ′′ = 1 in
space groupsP1, P21 or P212221. One of them was missed in the search. The results
for the other substances are summarized in Table 1, where twoforce fields (UNITAT

and OPLS) are compared. These force fields should have been speciallysuitable for
this class of compounds, using modeling by united atoms and all atoms, respectively.
Of course, the energy ordering is affected by the choice of the force field. In this study
the RMS difference between all hypothetical structures in the two force fields was 10
kJ/mol .

Table 1: Results of crystal structure prediction for 31 pyranoses in two empirical force
fields.

Force field UNITAT OPLS

WorstR 192 529
MedianR 16 10
Successful predictions (R= 1) 4 5
Worst∆E (kJ/mol) 16.2 34.1
Average∆E (kJ/mol) 6.5 8.9

Gavezzotti [22] has evaluated the energy differences between known polymorphs,
and estimated that they very seldom exceed 20 kJ/mol. Assuming polymorphic equi-
librium, this must also be the order of magnitude of the entropic effects:

∆U(T) = T∆S(T) (14)

So it should not be surprising that we cannot expect reliableresults in standard structure
prediction: 10 kJ/mol is the uncertainty of the force field aswell as the effect of the
neglected entropy differences. So for progress we need better force fields, but also
better understanding of thermal effects.
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Figure 8: The molecular diagrams given to the participants in the blind tests 1999
(I-III, VII) and 2001 (IV-VI).

4.3 Blind tests

As noted above, many publications on crystal structure prediction have known struc-
tures as subject. Even for the most honest investigator there is the temptation to con-
tinue the work until the experimental structure is at least found, albeit possibly with
a disappointingly high ranking. Therefore it was a very goodinitiative of the Cam-
bridge Structural Database to organize two blind tests, in 1999 [14] and in 2001 [15].
There were 11 researchers invited to participate in the firsttest and 17 in the second. In
both tests the chemical diagrams of three compounds were given, with the structure of
propane (which was already in the press) as a bonus in the firsttest. The only further
information was that there was one independent molecule in one of the most populated
space groups. A maximum of three predictions per molecule was allowed.

The seven molecules are shown in Figure 8. Not every participant tried to predict
every structure. The rankings of the correct predictions are given in Table 2. It is
seen that there were 13 submitted structures that were accepted according to the rules
of the blind test, but that there were only 8 genuine predictions (R= 1). The case of
substance I is interesting: during the data collection the cooling broke down and the
crystal melted. After recrystallization only another polymorph (Ib) could be obtained,
so this is presumably the stable one. But only the first polymorph was predicted,
notably by four participants.
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It is clear that the present possibilities of crystal structure prediction are rather
limited. Especially for flexible molecules (III and VI) the results are poor. For details
of all methods we must refer to the original papers. Here we just note that the only
successful result for propane (structure VII) was obtainedby a purely ab initio method,
as discussed in the next section.

Table 2: Rankings of correct predictions in the first two Cambridge blind tests

.

Test Molecule Participants Rankings
1999 Ia 11 1, 1, 1, 3

Ib 11 –
II 8 2
III 11 1

2001 IV 15 2, 3
V 15 1, 1, 1, 2†

VI 11 –
1999 VII 6 1

† Purists might reject one of these entries because the structure is rather deformed and another
one because it was submitted after the experimental structure was revealed.

4.4 Beyond empirical force fields

The importance of better force fields has been shown by the group of Price [3], who
has always stressed the importance of good electrostatics.Not only charges, but also
dipoles and quadrupoles on the atoms are needed. These are obtained by a distributed
multipole analysis (DMA) of the charge density calculated from an ab initio wave
function. Apart from electrostatics, there are also the Vander Waals terms: attraction at
long distances, repulsion at short distances. This part of the force field was empirical,
although in recent work more sophisticated approaches weredeveloped [23]. The
results are quite impressive. For rigid hydrogen-bonded molecules the rankings are
nearly always one. A weak point is the use of rigid models, which may explain a
certain noise in the energies: there are differences between the energies of structures
that should be identical.

In our group we have followed this approach, and extended it to the development of
a completely ab initio intermolecular force field [24] for aliphatic molecules containing
only C, H and O. This was done by parameterization on quantumchemical energies for
methanol dimers and trimers. Moreover, first-order intermolecular polarization was in-
cluded. This is essential to obtain transferability of the force field, from gas molecules
to condensed phases and from methanol to larger molecules. For rigid molecules very
promising results were obtained [25]: it was possible to predict the observed crystal
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structures of several small rigid molecules, including onecase (propane, see above)
where the structure was really unknown in advance.

For nonrigid molecules the intramolecular energy is the next bottleneck. Again,
empirical force fields were found to be insufficiently reliable. For small molecules it
is now feasible to perform ab initio energy minimizations “on the fly” by calculating
the energy of a molecule in the geometry imposed by its crystal surroundings. By also
calculating the first and second derivatives of the energy, alocal harmonic force field
can be created [26] which is then combined with the intermolecular contributions. Of
course, this must be redone when the geometry changes too much during the energy
minimization, and the calculations are rather time-consuming. After introduction of
thermal corrections, calculated in the standard harmonic approximation (Section 3.1),
good rankings were found for glycol and glycerol [27]. Even better results were ob-
tained for six hexapyranoses [28], as shown in Table 3. The structures were energy-
minimized at the SCF/6-31G* level for intramolecular energies, and recalculated at
that geometry with a more sophisticated technique (DFT/PW91-EXT). The RMS dif-
ferences of the ab initio intramolecular energies with the values found earlier for two
empirical force fields (see Section 4.2) were around 9 kJ/molfor UNITAT and 11 kJ/mol
for OPLS. The improvement on changing from energies (∆E) to free energies (∆A) is
seen to be significant. It was found that the temperature dependence of the energy and
the thermal expansion do not have a large influence, but the entropy and the zero-point
energy can contribute decisively. Because of the zero-point vibrations, consideration
of only energy would be insufficient even at absolute zero.

Table 3: Ab initio relative energies for six hexapyranoses.
SCF/6-31G* DFT/PW91-EXT

∆E RE ∆A RA ∆E RE ∆A RA D
α-D-galactose (16.8) 1 (11.7) 1 (14.5) 1 (10.9) 1 4.0
α-D-glucose (4.8) 1 (7.3) 1 (4.7) 1 (7.4) 1 4.0
α-D-talose 3.2 2 2.4 2 (0.7) 1 (1.5) 1 2.4
β-D-allose 4.5 3 0.5 2 2.9 5 (0.4) 1 3.1
β-D-galactose 6.4 3 1.0 2 4.7 3 (0.7) 1 3.5
β-D-glucose 1.9 3 (3.6) 1 6.2 5 1.3 2 3.1

(Free) energy differences∆E, ∆A (kJ/mol) and rankingsRE, RA refer to the experimental struc-
ture with respect to the global (free) energy minimum at 300 K, as found from 20 selected
structures for each substance. In case of a rankingR= 1 the entry in parentheses refers to the
(free) energy difference with the second best structure. Intermolecular energies from SCF/DZO

multipoles, intramolecular energies from levels as given,D being the root mean square differ-
ence (kJ/mol) between the two sets.
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4.5 Conclusions

These results suggest that better calculation of thermodynamic quantities, especially
energies, is a prerequisite for progress in crystal structure prediction. Of course, ki-
netic effects will occasionally be responsible for the observation of thermodynami-
cally metastable structures. Indeed, “Ostwald’s rule” says that these structures are
even preferentially formed, at least in the initial stages of crystallization. So let us
propose a more modest demand for crystal structure prediction: the free energy of an
experimental structure should not be unreasonably higher than that of any other pos-
sible structure. In a careful study it should be possible to produce a fairly limited list
of possible structures. From the point of view of force field development, a force field
that calculates a high relative free energy for an observed structure (say, over 7 kJ/mol)
should be regarded as inadequate.

It might be expected that some representation of entropic effects, or even the crys-
tallization process, would be possible by closer inspection of the structure genera-
tion. For example, looking at Figure 3 one would expect that arandom search method
would find minimum A more often than minimum C, despite its higher energy. But
in our experience experimentally observed structures are not found significantly more
frequently than others.

It is interesting to note that, for a given substance in a given force field, it is pos-
sible to calculate energy and density without knowledge of the crystal structure! This
is because all the most promising hypothetical structures usually have rather similar
values for these properties.

Completely reliableab initio crystal structure prediction may remain an illusion.
In 1994 Gavezzotti wrote a much-quoted article [22] titled ”Are crystal structures pre-
dictable?”, and suggested that the answer might very well be”No”. But even if that
were true, trying to improve the present possibilities provides very exciting research -
which one can do at present on computers as encountered in many private homes.

4.6 Update 2017

After writing these notes in 2003, four more blind tests for crystal structure prediction
have been held in Cambridge [29, 30, 31, 35]. Some results aregiven in Table 4. In
the last test [35] more than 3 submissions were allowed and not all participants worked
independently, so the present comparison with the previoustests is somewhat arbitrary.
The interested reader should consult the paper.

In the 2007 test [30] all four structures were correctly predicted by one group of
participants (Neumann, Leusen and Kendrick). They developed a sophisticated and
computationally highly expensive method based on DFT calculations for the entire
crystal [32, 33, 34]. In the last two tests this approach gaveagain excellent results, and
it is obviously the direction into which further research should proceed.
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Table 4: Rankings of correct predictions in the last four Cambridge blind tests

.

Test Molecule Participants Rankings
2004 VIII 15 1, 1, 1, 2†

XIX 10 1
X 12 –
XI 13 – (Z′′ = 2)

2007 XII 13 1, 1, 2, 2
XIII 12 1, 1, 1, 1
XIV 11 1, 1, 1
XV 9 1, 3

2010 XVI 15 1, 2
XVII 13 1, 2
XVIII 13 1
XIX 11 2, 3
XX 10 1, 1
XXI 10 –

2015 XXII 21 1, 1, 2, 2, 3, 3, ...
XXIII # 14 1, 2, ...
XXIV 8 2
XXV 14 1, 1, 1, 2, ...
XXVI 12 1, 2, ....

† Purists should reject these entries because the structure turned out to have been published
previously.
# For XXIII 5 polymorphs were known, two of them withZ′′ = 2. Altogether only two were
found with ranking less than 4.
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Figure 9: The molecular diagrams given to the participants in the blind tests 2004
(VIII-XI) and 2007 (XII-XV)
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Figure 10: The molecular diagrams given to the participantsin the blind tests 2010
(XVI-XXI) and 2017 (XXII-XXVI)
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